LydiaSyft: A Compositional Symbolic Synthesizer for LTL ,

. . *
Specifications
Marco Favorito Shufang Zhu
Banca d’Italia University of Oxford
marco.favorito@bancaditalia.it shufang.zhu@cs.ox.ac.uk

We present LydiaSyft, a compositional and symbolic synthesizer for specifications expressed in Lin-
ear Temporal Logic on finite traces (LTLs). LydiaSyft exploits the classical backward LTL ; synthesis
approach by first employing a fully compositional approach to construct the corresponding Deter-
ministic Finite Automaton (DFA) of LTL s specification, represented symbolically in Binary Decision
Diagrams (BDDs), then solves an adversarial reachability game on the symbolic DFA to abstract a
winning strategy, if exists.

1 Introduction

Reactive synthesis promises to automatically generate a verifiably correct program from a high-level
specification [9)]. Recently, there have been more and more interests on synthesis for specifications
expressed in Linear Temporal Logic on finite traces (LTLy), a finite-trace variant of LTL [4]. Roughly
speaking, we consider an alphabet of propositions partitioned into those controlled by the agent (one may
think of these as a binary encoding of agent actions) and those controlled by the environment (one may
think of these as fluents), and then we use LTL to specify which finite traces are desirable. The outcome
of the synthesis procedure is a program (a finite-state controller) that at every time step, given the values
of the environment propositions in the history so far, sets the next value of the agent propositions so that
the traces generated satisfy the LTL s specification []].

The classical approach to LTLy synthesis is based on first constructing a Deterministic Finite Au-
tomaton (DFA) corresponding to the LTL; specification, and then considering it as a game arena where
the agent tries to get to an accepting state in spite that the environment tries to avoid it. A winning
strategy, which is a finite-state controller returned by the synthesis procedure, can be obtained through a
backward fixpoint computation for adversarial reachability of the DFA accepting states [S].

In this paper, we present a compositional and symbolic solver LydiaSyft for LTL; synthesis. First
of all, LydiaSyft is integrated with a fully compositional approach to handle LTL; formulae. That is,
regardless of the structure of the LTL ; specification, LydiaSyft processes all the subformulae recursively
up to the leaves of the syntax tree and then compose the partial DFAs of the subformulae using common
operations over automata (e.g. union, intersection, concatenation), according to the LTL s operator being
processed [3]. After obtaining the DFA of the LTL; specification, LydiaSyft represents the DFA in a
symbolic form using Binary Decision Diagrams (BDDs) and solves a symbolic adversarial reachability
game on the DFA through a backward fixpoint computation. If the synthesis problem is realizable, a
winning strategy is abstracted using Boolean functional synthesis [12].

*Both authors are corresponding author.

© Marco Favorito & Shufang Zhu
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
SYNTCOMP 2023

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 LydiaSyft

2 The Tool LydiaSyft

LydiaSyft is an open-source tool implemented in C++11. More specifically, LydiaSyft uses Syfco to parse
the synthesis problems described in TLSF format [7] to obtain the LTL ; specification and the partition of
agent/environment propositions. LydiaSyft integrates the preprocessing techniques presented in [11] to
perform one-step realizability/unrealizability checks, which is implemented using Z3 [8]], at the begin-
ning of the synthesis procedure. If neither one-step check succeeds, Lydia [3]] is adopted as the backend
to construct the explicit-state DFA, which is later synthesized with respect to the partitioned propositions
adopting Syft [12]. We use the BDD library CUDD-3.0.0 [[10] for the symbolic DFA representation. In
this section, we introduce the usage and the architecture of LydiaSyft.

2.1 Usage

The command to execute LydiaSyft in Linux system is . /LydiaSyft [options].
-f,--spec-file The synthesis specification file in TLSF format.
-p,--print-strategy Print out the synthesized strategy in .dot form (default: False).
-t,--print-times Print out running times of each step (default: false).

2.2 Compositional DFA Construction (Lydia) [3]

Given a LTL formula ¢, the compositional DFA construction works by inductively applying a transfor-
mation procedure to each subformula. The approach is "bottom-up": it computes the DFA of the deepest
subformulas, and combines the partial results depending on the LTL ; operator under transformation. This
is in contrast with the previous techniques known in the literature that are "top-down": they proceed from
the root operator of the formula in order to compute the next states (see €.g. LDL¢2NFA in [, 2]]).

Since the transformation rules are defined over Linear Dynamic Logic on finite traces (LDLy) [4], the
input LTL ; formula ¢ is first translated into an equivalent (linear-size) LDL s formula. The elementary for-
mula #¢ (resp. ff) is translated into a DFA with only one accepting (resp. rejecting) state with a self-loop.
Boolean operators are processed with the analogous automata-theoretic operations: e.g. conjunction is
implemented as automata intersection, disjunction as union, and negation as complementation. The tem-
poral operator (p)y is handled according to the regular expression p. Due to lack of space, we cannot
describe it in full detail, and the interested reader should refer to [3]].

On the implementation side, Lydia uses the semi-symbolic DFA representation provided by Mona
[6]. In Mona, the transitions of a DFA are symbolically represented as a shared multi-terminal binary
decision diagram (shMBDD), where the transition relation of a DFA is encoded as a binary decision
diagram (BDD) with multiple terminal nodes. The alphabets of these DFAs are the sets of bit vectors of
length k, i.e. B¥, for some k. In our case, each bit is associated to an atomic proposition appearing in the
LDL; formula. In addition to a compact representation on transitions of DFAs, the Mona DFA library
provides efficient implementations of standard automata operations. These operations include product,
(existential) projection, determinization, and minimization. We extended the library so to include the
Kleene closure, the concatenation, and the universal projection. Intuitively, these operations are needed
in the modeling of nondeterminism of the %/ -operator semantics.

2.3 Symbolic Adversarial Reachability Game (Syft) [12]

We start by defining the concept of symbolic automaton:

Marco Favorito & Shufang Zhu 3

Definition 2.1 (Symbolic Automaton). Given a DFA & = (2#Y% S 50,8, F), the corresponding sym-
bolic automaton .7 = (2", %, % ,Zy,n, f) is defined as follows:

e 2 and % are as defined for ¥;

« Zisasetof [log, |S|| new propositions such that every state s € S corresponds to an interpretation
zZe2?,

* Zy €27 is an interpretation of the propositions in 2 corresponding to the initial state so;

e n:2% %27 x2% — 27 is a boolean function mapping interpretations X, ¥ and Z of the propo-
sitions of 2", % and Z to a new interpretation Z’ of the propositions of 2, such that if Z corre-
sponds to a state s € S then Z’ corresponds to the state 8(s,X UY);

* f is a boolean formula over the propositions in 2, such that f is satisfied by an interpretation Z
iff Z corresponds to a final state s € F'.

Intuitively, the symbolic automaton represents states by propositional interpretations, the transition
function by a boolean function and the set of final states by a boolean formula.

To solve the realizability problem over a symbolic automaton we compute a boolean formula w over
Z that is satisfied exactly by those interpretations that correspond to winning states. The specification
is realizable if and only if Z; satisfies w. To solve the synthesis problem, we compute a boolean function
7:2% — 27 such that for any sequence (Xo,Yo,Z0o), (X1,Y1,Z1),... that satisfies: (1) Zy is the initial
state; (2) For every i > 0, Y; = ©(Z;); (3) For every i > 0, Z;1.1 = n(X;,Y:,Z;) there exists an i such that
Z; satisfies f. In other words, starting from the initial state, for any sequence of uncontrollable variables,
if the controllable variables are computed by 7 and the next state is computed by 1, the play eventually
reaches an accepting state.

2.3.1 Realizability and Synthesis over Symbolic Automata

We can compute w and 7 through a fixpoint computation over two boolean formulas: w;, over the set
of propositions 2, and t;, over 2 U %'. These formulas encode winning states and winning outputs in
the following way: every interpretation Z € 2% such that Z = w; corresponds to a winning state, and
every interpretation (Z,Y) € 2% x 2% such that (Z,Y) |= t; corresponds to a winning state together with
a winning output of that state. When we reach a fixpoint, w; should encode all winning states and #; all
pairs of winning states and winning outputs.

In the procedure below, we compute the fixpoints of w; and ¢; starting from wq and #y. We assume
that we are able to perform basic Boolean operations over the formulas, as well as substitution, quan-
tification and testing for logical equivalence of two formulas. In the first step of the computation, we
initialize 10(Z,Y) = f(Z) and wo(Z) = f(Z), since every accepting state is a winning state. Note that o
is independent of the propositions from ¢/, since once the play reaches an accepting state the game is
over and we don’t care about the outputs anymore. Then we construct #;; and w;; | as follows:

101(Z,Y) = 6(Z,Y)V (~wi(Z) AYX i (0 (X, Y, Z)))
W[+1(Z) = HY.I[+1(Z,Y)

An interpretation (Z,Y) € 2% x 2% satisfies #;1 if either: (Z,Y) satisfies #;; or Z was not yet identified
as a winning state, and for every input X we can move from Z to an already-identified winning state by
setting the output to Y. Note that it is important in the second case that Z has not yet been identified as
a winning state, because it guarantees that the next transition will move closer to the accepting states.
Otherwise, it would be possible, for example, for 7, to accept an assignment to Y that moves from
Z back to itself, making the play stuck in a self loop. From ¢, |, we can construct w;;| by existentially

4 LydiaSyft

quantifying the output variables. This means that w; is satisfied by all interpretations Z € 2 that satisfy
t;+1 for some output, ignoring what the output is. The computation reaches a fixpoint when w;1.; = w; (=
denoting logical equivalence). At this point, no more states will be added, and so all winning states have
been found. By evaluating w; on Zy we can know if there exists a winning strategy. If that is the case, ;
can be used to compute this strategy. This can be done through the mechanism of boolean synthesis.

By giving ¢; as the input formula to a Boolean synthesis procedure, and setting % as the input
variables and % as the output variables, we get back a function 7 : 2% — 2? such that (Z,7(2)) =1,
if and only if there exists ¥ € 2% such that (Z,Y) |=. Using 7, we can define a symbolic finite-state
controller 7 corresponding to the winning strategy of the DFA game. For more details of the BDD-
based implementation of the synthesis technique, we refer to [12].

3 Conclusion

We presented in this paper the tool LydiaSyft, a compositional symbolic synthesizer for LTL; specifica-
tions. We believe that there are a lot of interesting directions to improve the performance of LydiaSyft.
A promising direction is to extend the composition methodology from the DFA construction level to the
synthesis level, as in [1] for Safety LTL synthesis, a safety fragment of LTL.

Acknowledgments

We thank the contributions of all the co-authors: Giuseppe De Giacomo, Jianwen Li, Geguang Pu, Lucas
M. Tabajara and Moshe Y. Vardi. This work is supported by the ERC Advanced Grant WhiteMech (No.
834228).

References

[1] Suguman Bansal, Giuseppe De Giacomo, Antonio Di Stasio, Yong Li, Moshe Y. Vardi & Shufang Zhu
(2022): Compositional Safety LTL Synthesis. In: VSTTE, Springer, pp. 1-19.

[2] R.I. Brafman, G. De Giacomo & F. Patrizi (2018): LTL¢/LDL¢ Non-Markovian Rewards. In: AAAL

[3] Giuseppe De Giacomo & Marco Favorito (2021): Compositional Approach to Translate LTLy/LDL; into
Deterministic Finite Automata. In: ICAPS.

[4] Giuseppe De Giacomo & Moshe Y. Vardi (2013): Linear Temporal Logic and Linear Dynamic Logic on
Finite Traces. In: IJCAL

[5] Giuseppe De Giacomo & Moshe Y. Vardi (2015): Synthesis for LTL and LDL on Finite Traces. In: IJCAL

[6] J. G. Henriksen, J. L. Jensen, M. E. Jgrgensen, N. Klarlund, R. Paige, T. Rauhe & A. Sandholm (1995):
Mona: Monadic Second-order Logic in Practice. In: TACAS.

[7] Swen Jacobs, Guillermo A. Perez & Philipp Schlehuber-Caissier (2023): The Temporal Logic Synthesis
Format TLSF v1.2. arXivi2303.03839.

[8] Leonardo de Moura & Nikolaj Bjgrner (2008): Z3: An Efficient SMT Solver. In: TACAS, pp. 337-340.
[9] A.Pnueli & R. Rosner (1989): On the Synthesis of a Reactive Module. In: POPL.
[10] Fabio Somenzi (2016): CUDD: CU Decision Diagram Package 3.0.0. Universiy of Colorado at Boulder.

[11] Shengpin Xiao, Jianwen Li, Shufang Zhu, Yingying Shi, Geguang Pu & Moshe Y. Vardi (2021): On-the-fly
Synthesis for LTL over Finite Traces. In: AAAL

https://arxiv.org/abs/2303.03839

Marco Favorito & Shufang Zhu 5

[12] Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu & Moshe Y. Vardi (2017): Symbolic LTLy Syn-
thesis. In: IJCAL

	Introduction
	The Tool LydiaSyft
	Usage
	Compositional DFA Construction (Lydia) GiacomoF21
	Symbolic Adversarial Reachability Game (Syft) ZTLPV17
	Realizability and Synthesis over Symbolic Automata

	Conclusion

