
Synthesis of Maximally Permissive Strategies for LTLf Specifications

Shufang Zhu∗ and Giuseppe De Giacomo
Sapienza University of Rome, Rome, Italy
{zhu,degiacomo}@diag.uniroma1.it

Abstract
In this paper, we study synthesis of maximally per-
missive strategies for Linear Temporal Logic on fi-
nite traces (LTLf) specifications. That is, instead
of computing a single strategy (aka plan, or pol-
icy), we aim at computing the entire set of strate-
gies at once and then choosing among them while
in execution, without committing to a single one
beforehand. Maximally permissive strategies have
been introduced and investigated for safety prop-
erties, especially in the context of Discrete Event
Control Theory. However, the available results for
safety properties do not apply to reachability prop-
erties (eventually reach a given state of affair) nor to
LTLf properties in general. In this paper, we show
that maximally permissive strategies do exist also
for reachability and general LTLf properties, and
can in fact be computed with minimal overhead wrt
the computation of a single strategy using state-of-
the-art tools.

1 Introduction
One of the key problems of Artificial Intelligence is to equip
intelligent agents with autonomous capability of deliberating
the execution of complex courses of action to accomplish de-
sired tasks [Reiter, 2001; Ghallab et al., 2016]. This problem
is related to reactive synthesis in Formal Methods: we have
an agent acting in an adversarial environment such that the
agent controls certain variables (the agent actions) and the
environment controls the others (the environment reactions);
given a specification of the task, the agent has to find a strat-
egy (plan/policy/controller/program) to choose its actions to
fulfill the task in spite of all possible environment reac-
tions [Pnueli and Rosner, 1989]. Specifically, reactive synthe-
sis shares deep similarities with planning in fully observable
nondeterministic domains (FOND, strong plans) [Cimatti et
al., 2003; Geffner and Bonet, 2013].

In Formal Methods, the most common formalism for
specifying tasks is Linear Temporal Logic (LTL) [Pnueli,
1977]. In AI, a finite trace variant of LTL (LTLf) is popu-
lar [Baier and McIlraith, 2006; De Giacomo and Vardi, 2013;

∗Corresponding Author

De Giacomo and Vardi, 2015; Zhu et al., 2017; De Giacomo
and Rubin, 2018; Camacho et al., 2019]. The interest on fi-
nite traces is due to the observation that typically intelligent
agents are not dedicated to a single task all their life, but are
supposed to accomplish one task after another.

Deliberating courses of action (i.e., strategies) is also
related to controller synthesis in Discrete Event Sys-
tems (DES) [Ehlers et al., 2017]. In DES we are primarily
interested in a variant of the problem: suitably control an
agent’s behavior to conform to a set of specifications while
preserving its autonomy as much as possible. In other words,
we want to synthesize a controller that embeds all possible
allowed courses of action so that whatever actual course of
action the agent chooses, the specifications are satisfied. Such
a controller is said to be maximally permissive [Wonham and
Ramadge, 1987; Cassandras and Lafortune, 2008; Wonham
and Cai, 2019]. Maximally permissive controllers are indeed
also of interest in AI, as discussed, e.g., in [De Giacomo et
al., 2012; De Giacomo et al., 2013; Banihashemi et al., 2016;
Banihashemi et al., 2018; De Giacomo et al., 2020].

In this paper, following this idea, instead of computing a
classical (aka, deterministic) strategy for fulfilling a task, we
aim at computing the maximally permissive strategy, i.e., the
entire set of strategies that fulfil the task. This allows the
agent to be able to choose among them while in execution,
without committing to any specific one beforehand.

A classical strategy for a task, while already considers
all possible environment reactions, prescribes in any circum-
stances exactly what action to do until the task is fulfilled.
This leaves no freedom to the agent in choosing actions that
would not harm fulfilling the original task, but would allow
the agent to take additional opportunities, such as additional
tasks. The maximally permissive strategy, i.e., the entire set
of strategies fulfilling a task, instead, gives the maximal free-
dom of the agent in taking more opportunities, while guaran-
teeing that the original task is being accomplished.

To capture the notion of maximally permissive strategy,
we rely on nondeterministic strategies. A classical (aka, de-
terministic) strategy is a function from the history so far to
the next action the agent should perform. A nondeterministic
strategy is a function from the history to a set of next actions
such that by arbitrarily choosing among them, at each step,
we get a deterministic strategy that accomplishes the task. In
other words, a nondeterministic strategy represents a set of

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2783

deterministic strategies.
The foundational result of DES is that for the kind of spec-

ification of interest in DES, which are safety specifications,
there exists a unique nondeterministic strategy that is able to
represent the maximally permissive strategy, i.e., the entire
set of deterministic strategies. Unfortunately, this powerful
result applies only to safety properties [Bernet et al., 2002].
In particular, a nondeterministic strategy that is able to repre-
sent the entire set of deterministic strategies does not exist for
reachability properties, or for LTLf specifications. Yet, the
need for computing the maximally permissive strategies ex-
ists, and techniques to approximate it have been studied, e.g.,
in [Sakakibara and Ushio, 2020].

In this paper, we show that maximally permissive strate-
gies for reachability and general LTLf properties are still rep-
resentable via nondeterministic strategies. Specifically, the
entire set of deterministic strategies to fulfil an LTLf task can
be characterized by two (vs. one) nondeterministic strategies
and a constraint that requires to eventually switch from the
first one to the second one. Interestingly, these two nondeter-
ministic strategies can be computed with minimal overhead
wrt the computation of a single deterministic strategy using
state-of-the-art tools.

2 Preliminaries
LTLf Basics. Linear-time Temporal Logic on finite
traces (LTLf) is a specification language to express temporal
properties on finite traces [De Giacomo and Vardi, 2013]. In
particular, LTLf has the same syntax as LTL, which is instead
interpreted over infinite traces [Pnueli, 1977]. Given a set of
propositions Prop, LTLf formulas are generated as follows:

ϕ ::= a | (ϕ ∧ ϕ) | (¬ϕ) | (◦ϕ) | (ϕU ϕ)
where a ∈ Prop is an atom, ◦ for Next, and U for Until
are temporal operators. We make use of standard Boolean
abbreviations such as ∨ (or) and→ (implies), true and false .
In addition, we define the following abbreviations Weak
Next •ϕ ≡ ¬◦¬ϕ, Eventually ♦ϕ ≡ true U ϕ and Always
�ϕ ≡ falseRϕ, whereR is for Release.

A trace π = π0π1 . . . is a sequence of propositional inter-
pretations (sets), where for every i ≥ 0, πi ∈ 2Prop is the
i-th interpretation of π. Intuitively, πi is interpreted as the
set of propositions that are true at instant i. We denote the
last instant (i.e., index) in a trace π by lst(π). A trace π is
an infinite trace if lst(π) = ∞, which is formally denoted
as π ∈ (2Prop)ω; otherwise π is a finite trace, denoted as
π ∈ (2Prop)∗. Moreover, by πk = π0 · · ·πk we denote the
prefix of π up to the k-th iteration, and πk = ε denotes an
empty trace if k < 0. LTLf formulas are interpreted over fi-
nite, nonempty traces. Given π, we define when an LTLf for-
mula ϕ holds at instant i, 0 ≤ i ≤ lst(π), written as π, i |= ϕ,
inductively on the structure of ϕ, as:

• π, i |= a iff a ∈ πi (for a ∈ Prop);
• π, i |= ¬ϕ iff π, i 6|= ϕ;
• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2;
• π, i |= ◦ϕ iff i < lst(π) and π, i+ 1 |= ϕ;
• π, i |= ϕ1 U ϕ2 iff ∃j such that i ≤ j ≤ lst(π) and
π, j |= ϕ2, and ∀k, i ≤ k < j we have that π, k |= ϕ1.

We say π satisfies ϕ, written as π |= ϕ, if π, 0 |= ϕ.

Reactive Synthesis. The problem of reactive synthesis can
be viewed as a game of the environment and the agent. The
goal of reactive synthesis is to synthesize an agent strategy
such that no matter how the environment behaves, the com-
bined behavior trace of both players satisfy desired proper-
ties [Pnueli and Rosner, 1989]. Formally, a reactive synthesis
problem is described as a tuple P = 〈X ,Y, ϕ〉, where X and
Y are two disjoint sets of variables controlled by the environ-
ment and the agent, respectively, and ϕ is a logical specifica-
tion formula over X ∪Y expressing desired properties. A de-
terministic agent strategy is a function σag : (2X∪Y)∗×2X →
2Y . A play is a sequence π = (X0 ∪ Y0)(X1 ∪ Y1) · · · ∈
(2X∪Y)ω over the alphabet 2X∪Y . A play π is compatible
with an agent strategy σag if σag(πi−1, Xi) = Yi for every
i ≥ 0. Analogously, finite prefix πk is compatible with σag
if σag(πi−1, Xi) = Yi for every 0 ≤ i ≤ k. Given a synthe-
sis problem P = 〈X ,Y, ϕ〉, an agent strategy σag realizes ϕ,
with respect to the corresponding X and Y , if every play π
that is compatible with σag satisfies ϕ. Sometimes, for sim-
plicity, we do not explicitly mention X and Y if they are clear
from the context. In this paper, we focus on LTLf synthesis.
Definition 1 (LTLf synthesis). The problem of LTLf synthe-
sis is described as a tuple P = 〈X ,Y, ϕ〉, where ϕ is an
LTLf formula over X ∪ Y . Computing an agent strategy that
realizes ϕ if one exists, is called the LTLf synthesis problem.

Solving LTLf synthesis is known to be 2EXPTIME-
complete [De Giacomo and Vardi, 2015].
Two-player Games. Classical solutions to LTLf synthesis
relies on a reduction to two-player games. A two-player game
is described as a tuple G = (A,W), where A is the game
arena and W is the winning objective. For synthesis, we of-
ten take the corresponding deterministic automaton of the for-
mula as the game arena, which is a tuple A = (2X∪Y , S, s0, δ),
where δ : S × 2X∪Y → S is the transition function. Given a
play π = (X0 ∪ Y0)(X1 ∪ Y1) . . . ∈ (2X∪Y)ω , running π on
A gives us an infinite sequence ρ = s0s1 . . . ∈ Sω such that
s0 is the initial state and si+1 = δ(si, Xi ∪ Yi) for all i ≥ 0.
Since the transitions in A are all deterministic, we thus de-
note by ρ = Run(π,A) the unique sequence of running π on
A. Analogously, we denote by ρk = Run(πk,A) the unique
finite sequence of running πk on A, and ρk = s0s1 . . . sk+1.
The winning objective W indicates a set of desired plays for
the agent. A play π is a winning play with respect to win-
ning objective W if π ∈ W . In this paper, we only con-
sider two-player games with Reachability objectives (Reach-
ability games). More specifically, the winning objective
W = Reach(F), and Reach(F) = {π ∈ (2X∪Y)ω | ρ =
Run(π,A) and ∃` ≥ 0: ρ` ∈ F}, where F ⊆ S is a set of
goal states. Intuitively, reachability games require that a goal
state in F is visited at least once.

An agent strategy σag is winning in G = (A,Reach(F)) if
every play π that is compatible with σag is winning, i.e., π ∈
W . In Reachability games, s ∈ S is a winning state for the
agent (resp. environment) if the agent (resp. the environment)
has a winning strategy in the game G = (A′,Reach(F)),
where A′ = (2X∪Y , S, s, δ), i.e., the same arena A but with
the new initial state s. By Wag(G) (resp. Wenv(G)) we de-
note the set of all agent (resp. environment) winning states.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2784

Intuitively, Wag represents the “agent winning region”, from
which the agent is able to win the game, no matter how the
environment behaves.
Symbolic LTLf Synthesis. State-of-the-art LTLf synthesis
tools [Bansal et al., 2020; De Giacomo and Favorito, 2021]
leverage the symbolic synthesis framework presented in [Zhu
et al., 2017; Tabajara and Vardi, 2019], which solves the syn-
thesis problem via a symbolic reachability game computa-
tion. The game arena A = (2X∪Y , S, s0, δ) is compactly rep-
resented symbolically, by encoding the state space using a
logarithmic number of propositions. The symbolic represen-
tation of A is a tuple As = (X ,Y,Z, I, η), where Z is a
set of variables such that |Z| = dlog |S|e, and every state
s ∈ S corresponds to an interpretation Z ∈ 2Z over Z . I is
a Boolean formula satisfied only by the interpretation of the
initial state s0. η : 2X ×2Y ×2Z → 2Z is a Boolean function
mapping interpretations X , Y and Z of the propositions of
X , Y and Z to a new interpretation Z ′ of the propositions of
Z , such that if Z corresponds to a state s ∈ S then Z ′ corre-
sponds to the state δ(s,X ∪ Y). The set of goal states is rep-
resented by a Boolean formula g over Z that is only satisfied
by the interpretations of states in F . Accordingly, we denote
the symbolic reachability game as Gs = (As,Reach(g)).

The game is solved by performing a least fixpoint com-
putation over two Boolean formulas w over Z and t over
Z ∪ X ∪ Y , which represent the agent winning region Wag

and tuples of winning states, environment actions with suit-
able agent actions, respectively. w and t are initialized as
w0(Z) = g(Z) and t0(Z,X ,Y) = g(Z), since every goal
state is an agent winning state. Note that t0 is independent of
the propositions from X ∪Y , since once the play reaches goal
states, the agent can do whatever it wants. ti+1 and wi+1 are
constructed as follows:

wi+1(Z) = wi(Z) ∨ ∀X.∃Y.wi(η(Z,X ,Y))

ti+1(Z,X ,Y) = ti(Z,X ,Y) ∨ (¬wi(Z)

∧ wi+1(Z) ∧ wi(η(Z,X ,Y)))

The computation reaches a fixpoint when wi+1 ≡ wi. At
this point, no more states will be added, and so all agent win-
ning states have been collected. By evaluating wi+1 on I we
can know if there exists a winning strategy. If that is the case,
ti+1 can be used to compute a winning strategy through the
mechanism of Boolean synthesis [Fried et al., 2016].
Nondeterministic Strategies. An agent strategy can also
be nondeterministic, which prescribes for each history πk ∈
(2X∪Y)∗, and an environment action X ∈ 2X , a set of
agent actions to choose from nondeterministically. Formally,
a nondeterministic agent strategy is denoted as a function
Πag : (2X∪Y)∗ × 2X → 22

Y
. We denote the set of determin-

istic strategies induced by a nondeterministic strategy Πag as
the set [[Πag]]. Every deterministic strategy σag ∈ [[Πag]] is
obtained by a corresponding choice function ch : (2X∪Y)∗ ×
2X → 2Y such that for every πk ∈ (2X∪Y)∗ that is com-
patible with ch and X ∈ 2X , ch(πk, X) ∈ Πag(πk, X) and
σag(πk, X) = ch(πk, X). Nondeterministic strategy Πag re-
alizes ϕ if every induced strategy σag ∈ [[Πag]] realizes ϕ.
Sometimes, for simplicity, we say σag (resp. Πag) is a win-
ning strategy of ϕ, instead of σag (resp. Πag) realizes ϕ. A

trace π (finite or infinite) is compatible with a nondeterminis-
tic strategy Πag if Yi ∈ Πag(πi−1, Xi) for every i ≥ 0.
Comparing Strategies. Let P = 〈X ,Y, ϕ〉 be a synthesis
problem, and Πag a winning strategy of ϕ. We consider the
permissiveness of Πag with respect to the deterministic strate-
gies that it induces.
Definition 2. LetP = 〈X ,Y, ϕ〉 be a synthesis problem, Πag

and Π′ag two winning strategies of ϕ. Πag is more permissive
than Π′ag if [[Π′ag]] ⊆ [[Πag]].

3 Maximally Permissive Strategy
We first introduce the notion of maximally permissive strat-
egy for a task, denoted by MaxSet, which consists of the en-
tire set of deterministic winning strategies for the task, from
which to choose one during the execution. Then we show that
for special cases, we can compute a single nondeterministic
strategy to capture MaxSet. However, in general, this does
not happen for LTLf specifications.
Definition 3 (Maximally Permissive Strategy). Let P =
〈X ,Y, ϕ〉 be a synthesis problem, the maximally per-
missive strategy of ϕ is MaxSet(ϕ) = {σag |
σag is a deterministic winning strategy of ϕ}.
Theorem 1. Let P = 〈X ,Y, ϕ〉 be a synthesis problem.
If there exists a nondeterministic winning strategy Πag that
is more permissive than every other winning strategy, then
[[Πag]] = MaxSet(ϕ).1

Proof. Suppose there exists a nondeterministic winning strat-
egy Πag that is more permissive than every other winning
strategy Π′ag , such that [[Π′ag]] ⊆ [[Πag]]. Note that every de-
terministic strategy σag can be considered as a special case of
a nondeterministic strategy, in which case, [[σag]] = {σag}.
Therefore, it holds that σag ∈ [[Πag]] for every deterministic
winning strategy of ϕ, and so [[Πag]] = MaxSet(ϕ).

Although it is practical to utilize a single nondeterminis-
tic strategy Πag to express the maximally permissive strategy
MaxSet(ϕ), this only applies to the cases where ϕ specifies a
safety property, meaning that every violating trace has a finite
bad prefix that falsifies the specificationϕ. This is because the
problem of synthesizing safety properties can be reduced to
a safety game, which always has a nondeterministic winning
strategy Πag that is more permissive than every other winning
strategy [Bernet et al., 2002]. However, this result does not
apply to properties that are not safety [Bernet et al., 2002]. In
particular, we give here a direct proof for LTLf specifications.
Theorem 2. In general, LTLf specifications do not admit a
nondeterministic winning strategy Πag that is more permis-
sive than every other strategy.

Proof. We prove by showing that such a strategy does not
even exist for a simple LTLf specification ϕ = ♦b. In partic-
ular, we have b ∈ Y s.t. b is under the control of the agent. It
is trivial to see that no matter how the environment behaves
on X , the satisfaction of ♦b only relies on the agent. Sup-
pose Πag is a nondeterministic winning strategy of ♦b that is

1It should be noted that the definition of maximally permissive
strategy and Theorem 1 also applies to LTL synthesis.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2785

more permissive than every other one. For every determinis-
tic strategy σag ∈ [[Πag]], its corresponding choice function
ch : (2{b})∗ → 2{b} satisfies that ∃k ≥ 0 such that ch emits
b at time step k (note that X can be ignored here), and ch
keeps emitting ¬b for 0 ≤ i < k. Otherwise, σag is indeed
not a winning strategy. Therefore, we can label every choice
function with its corresponding k-value. We now take the
choice function chm that has the greatest k-value, compar-
ing to other choice functions of Πag . Then we can construct
another choice function ch′ that keeps copying chm but post-
poning the moment of outputting b for one timestep.

Indeed, ch′ leads to a deterministic winning strategy σ′ag ,
since σ′ag outputs b at timestep m + 1 and thus the compat-
ible play π (a unique sequence, since X can be ignored in
this example) is such that πm+1 |= ♦b holds. Therefore,
σ′ag ∈ MaxSet(♦b), but σ′ag /∈ [[Πag]] leading to a contra-
diction. Thus, in general, LTLf specifications do not admit a
nondeterministic winning strategy Πag that is more permis-
sive than every other strategy.

4 MaxSet of LTLf Synthesis
We now explain how to compute MaxSet(ϕ) of LTLf syn-
thesis problem P = 〈X ,Y, ϕ〉, by reasoning on its corre-
sponding reachability game. Recall that a winning strategy
for safety games can be interpreted as a “staying in the win-
ning region” strategy, since as long as the game stays in the
winning region, the agent is able to force the game to move
to another state that still belongs to the winning region [Ber-
net et al., 2002]. Nevertheless, for reachability games, such
strategies do not necessarily lead to winning. This is because
such a strategy can possibly generate a play that only stays in
the winning region but never visits the goal states, which is
indeed not a winning play. Therefore, apart from “staying in
the winning region” such that the agent has the ability to win,
no matter how the strategy keeps “deferring” the winning mo-
ment, a winning strategy also needs to start “non-deferring”
such that eventually reaching goal states.

Here, we show how to capture the entire set of win-
ning strategies of reachability games with two nondetermin-
istic strategies. Intuitively, the first nondeterministic strategy
keeps the agent in the winning region, where the agent is al-
ways able to win the game, which is called deferring strat-
egy. The second nondeterministic strategy aims to taking
the agent to goal states without any hesitation such that ag-
gressively winning the game, which is called non-deferring
strategy. Both strategies are defined with respect to the agent
winning region, therefore, we assume that the agent winning
region Wag =

⋃
0≤i≤n Wi is computed apriori via a least

fixpoint computation and s0 ∈ Wag such that there is at least
one agent winning strategy of the reachability game [De Gia-
como and Vardi, 2015].

4.1 Deferring Strategy
For reachability games G = (A,Reach(F)), a deferring
strategy should keep the play in the agent winning region
Wag , if the reachability goal F is not visited yet, and so the
agent is able to keep deferring the winning moment.

Definition 4 (Deferring strategy of reachability games).
Let G = (A,Reach(F)) be a reachability game and
Wag the set of agent winning states. σdf

ag is a defer-
ring strategy, if for every play that is compatible with
σdf
ag , ρ = Run(π,A), such that ρ = s0s1 . . . satisfies

s0 ∈Wag and ∀` ≥ 0, if s` /∈ F then s`+1 ∈Wag.

Lemma 1. Let G = (A,Reach(F)) be a reachability game,
and Wag be the agent winning region. Then s0 ∈ Wag iff
there exists a deferring strategy.

In order to obtain a deferring strategy, we define a strategy
generator based on the winning region Wag , represented as a
nondeterministic transducer, where nondeterminism is of the
kind “don’t-care”: all nondeterministic choices are equally
good. The strategy generator T df = (2X∪Y , S, s0, %, τ) is
constructed as follows:

• 2X∪Y , S and s0 are the same as in A;
• %df : S × 2X → 2S is the transition function such that
%df(s,X) = {s′|s′ = δ(s,X ∪Y) and Y ∈ τdf(s,X)};

• τdf : S × 2X → 22
Y

is the output function such that
∀X ∈ 2X , τdf(s,X) = {Y | δ(s,X ∪ Y) ∈ Wag} if
s ∈Wag\F ; otherwise, τdf(s,X) = 2Y .

This transducer represents a nondeterministic deferring
strategy Πdf

ag : (2X∪Y)∗ × 2X → 22
Y

in the following way:
∀πk ∈ (2X∪Y)∗ that is compatible with Πdf

ag , and ∀X ∈ 2X ,

Πdf
ag(πk, X) =

{
Y ∈ 2Y if ρk visits F,

τdf(sk+1, X) otherwise.
where ρk = Run(πk,A) such that ρk = s0s1 . . . sk+1.

Every deterministic deferring strategy σdf
ag is generated from

Πdf
ag by a corresponding choice function chdf : (2X∪Y)∗ ×

2X → 2Y such that ∀πk ∈ (2X∪Y)∗ that is compatible
with chdf , and ∀X ∈ 2X , chdf(πk, X) ∈ Πdf

ag(πk, X) and
σag(πk, X) = chdf(πk, X).

Theorem 3. Let G = (A,Reach(F)) be a reachability game,
and Πdf

ag be computed as above. Then deterministic strategy
σag is a deferring strategy iff σag ∈ [[Πdf

ag]].

4.2 Non-Deferring Strategy
Different from a deferring strategy that keeps deferring the
winning moment, a non-deferring strategy brings the play
closer to goal states F at every timestep until reaching it.
In order to represent the distance towards F , for every state
s ∈ Wag , where Wag =

⋃
0≤i≤n Wi, computed by a least

fixpoint computation, we introduce a distance value d(s)
that indicates the shortest distance from s to F . Therefore,
∀s ∈ Wag , if s ∈ F (i,e., s ∈ W0) then d(s) = 0; other-
wise, since s ∈ Wi+1\Wi for some 0 ≤ i ≤ n, we have
d(s) = i+ 1. We now introduce non-deferring strategy.

Definition 5 (Non-Deferring strategy of reachability games).
Let G = (A,Reach(F)) be a reachability game and Wag

be the agent winning region. σndf
ag is a non-deferring strat-

egy, if for every play π that is compatible with σndf
ag , ρ =

Run(π,A) such that ρ = s0s1 . . . satisfies s0 ∈ Wag and
∃` ≥ 0.d(s`) = 0 and ∀0 ≤ j ≤ `.d(sj+1) = d(sj)− 1.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2786

Lemma 2. Let G = (A,Reach(F)) be a reachability game,
and Wag be the agent winning region. Then s0 ∈ Wag iff
there exists a non-deferring strategy.

In order to obtain a non-deferring strategy, we also define
a strategy generator based on the winning region Wag =⋃

0≤i≤n Wi, represented as a nondeterministic transducer
T ndf = (2X∪Y , S, s0, %

ndf , τndf), where
• 2X∪Y , S and s0 are the same as in A;
• %ndf : S × 2X → 2S is the transition function such that
%ndf(s,X) = {s′|s′ = δ(s,X ∪ Y) and Y ∈ τndf(s)};

• τndf : S × 2X → 22
Y

is the output function such that
∀X ∈ 2X , τndf(s,X) = {Y |δ(s,X ∪ Y) ∈ Wi} if
s ∈Wi+1\Wi, otherwise τndf(s,X) = 2Y .

This transducer represents a nondeterministic non-
deferring strategy Πndf

ag : (2X∪Y)∗ × 2X → 22
Y

in the fol-
lowing way: ∀πk ∈ (2X∪Y)∗ that is compatible with Πndf

ag ,
and ∀X ∈ 2X

Πndf
ag (πk, X) =

{
Y ∈ 2Y if ρk visits F,

τndf(sk+1, X) otherwise.
where ρk = Run(πk,A) such that ρk = s0s1 . . . sk+1.

Every deterministic strategy σndf
ag is generated from Πndf

ag by
a corresponding choice function chndf : (2X∪Y)∗×2X → 2Y

such that ∀πk ∈ (2X∪Y)∗ that is compatible with chndf , and
∀X ∈ 2X , chndf(πk, X) ∈ Πndf

ag (πk, X) and σndf
ag (πk, X) =

chndf(πk, X).

Theorem 4. Let G = (A,Reach(F)) be a reachability game,
and Πndf

ag be computed as above. Then deterministic strategy
σag is a non-deferring strategy iff σag ∈ [[Πndf

ag]].

Theorem 5. Let G = (A,Reach(F)) be a reachability game,
Πdf

ag and Πndf
ag be computed as above, respectively. Then

[[Πndf
ag]] ⊆ [[Πdf

ag]].

4.3 Maximally Permissive Strategy
We now explain how to obtain the maximally permissive
strategy MaxSet through nondeterministic strategies Πdf

ag and
Πndf

ag . To do so, we start with showing how to induce
deterministic strategies out of Πdf

ag and Πndf
ag . Every de-

terministic strategy σag is generated from nondeterministic
strategies Πdf

ag and Πndf
ag by a corresponding choice function

ch : (2X∪Y)∗×2X → 2Y . Intuitively speaking, apart from re-
stricting σag to be a deferring strategy such that being able to
postpone the winning moment, ch also restricts σag to change
to a non-deferring strategy such that eventually reaching the
goal states. Formally, we require ch satisfying both of the
following conditions:

1. for every πk ∈ (2X∪Y)∗ compatible with ch, and ∀X ∈
2X . ch(πk, X) ∈ Πdf

ag(πk, X);
2. for every π ∈ (2X∪Y)ω compatible with ch, ∃j ≥ 0

such that ∀h ≥ j, ch(πh−1, Xh) ∈ Πndf
ag (πh−1, Xh).

Every choice function ch : (2X∪Y)∗ × 2X → 2Y that sat-
isfies the above characteristic is able to induce a determinis-
tic strategy out of nondeterministic strategies Πdf

ag and Πndf
ag .

Note that choice functions are a general mathematical means

to extract deterministic strategies from nondeterministic ones.
Their role here is to prove soundness (every choice func-
tion with the above characteristic will create a determinis-
tic winning strategy) and completeness (every deterministic
winning strategy can be captured by one such choice func-
tion). We denote the set of all induced deterministic strate-
gies by [[Πdf

ag,Π
ndf
ag]]. The following theorem shows that

[[Πdf
ag,Π

ndf
ag]] can capture the maximally permissive strategy.

Theorem 6. Let P = 〈X ,Y, ϕ〉 be an LTLf synthe-
sis problem, and Πdf

ag,Π
ndf
ag be computed as above. Then

[[Πdf
ag,Π

ndf
ag]] = MaxSet(ϕ).

Proof. We prove [[Πdf
ag,Π

ndf
ag]] = MaxSet(ϕ) by showing

that σag ∈ [[Πdf
ag,Π

ndf
ag]] iff σag ∈ MaxSet(ϕ).

(⇐) We need to prove that every deterministic winning strat-
egy σag ∈ MaxSet(ϕ) is such that σag ∈ [[Πdf

ag,Π
ndf
ag]].

We now show that we can construct a choice function
ch : (2X∪Y)∗ × 2X → 2Y that is able to generate the same
agent strategy from Πdf

ag and Πndf
ag . First, we require ch be-

ing such that ∀πk ∈ (2X∪Y)∗ that is compatible with σag ,
∀X ∈ 2X , ch(πk, X) = σag(πk, X). Indeed, every play π
that is compatible with ch is also compatible with σag . There-
fore, ∀π ∈ (2X∪Y)ω that is compatible with ch, it is triv-
ial to see that ∀k ≥ 0, ch(πk−1, Xk) = σag(πk−1, Xk) ∈
Πdf

ag(πk−1, Xk), since π has to stay in Wag before reach-
ing F , otherwise, σag cannot be a winning strategy. More-
over, ∃` ≥ 0, π` |= ϕ. Note that we take the small-
est ` for π` |= ϕ. Indeed, ρ` = Run(π`,A) such that
ρ` = s0s1 . . . s`+1 satisfies that s`+1 ∈ F . Therefore, we
have that ch(π`−1, X`) = σag(π`−1, X`) ∈ Πndf

ag (π`−1, X`),
which, by construction, consists of all the Y s that lead s` to F
in one step with X`. Furthermore, ∀h > `, ch(πh−1, Xh) =
σag(πh−1, Xh) ∈ Πndf

ag (πh−1, Xh), since ρh visits F al-
ready, and so Πndf

ag (πh−1, Xh) = 2Y . We thus conclude that
σag ∈ [[Πdf

ag,Π
ndf
ag]] holds.

(⇒) We need to prove that every deterministic strategy
σag ∈ [[Πdf

ag,Π
ndf
ag]] is a winning strategy, such that σag ∈

MaxSet(ϕ). Indeed, σag is generated by a corresponding
choice function ch : (2X∪Y)∗×2X → 2Y that follows our de-
fined conditions. That is to say, ∀πk ∈ (2X∪Y)∗ that is com-
patible with σag , and ∀X ∈ 2X , σag(πk, X) ∈ Πdf

ag(πk, X).
Moreover, ∀π ∈ (2X∪Y)ω that is compatible with σag, ∃j ≥
0 such that ∀h ≥ j, σag(πh−1, Xh) ∈ Πndf

ag (πh−1, Xh).
Thus, for every play π that is compatible with σag , ρ =
Run(π,A) such that ρ = s0s1 . . . satisfies that s0 ∈ Wag

and ∀` ≥ 0, if s`+1 /∈ Wag , then ρ` = s0s1 . . . s`+1 def-
initely has visited F already such that ϕ is satisfied already.
This is because Πdf

ag restricts π to stay in Wag before reaching
F . Otherwise, from ` = j, σag switches to Πndf

ag , which re-
stricts ρ to eventually reach F such that ϕ is satisfied. Hence,
σag is a winning strategy and so σag ∈ MaxSet(ϕ).

5 Implementation and Empirical Evaluation
In this section, we first describe how to leverage synthesis
framework being integrated in state-of-the-art LTLf synthesis

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2787

tools to compute the maximally permissive strategy. Then, by
empirical evaluation, we show computing the maximally per-
missive strategy only brings a minimal overhead with respect
to the computation of a single winning strategy.

5.1 Symbolic MaxSet Computation
Recall that the symbolic LTLf synthesis framework presented
in [Zhu et al., 2017; Tabajara and Vardi, 2019] consists of
computing two Boolean formulas w and t, which represent
the agent winning region Wag and tuples of winning states,
environment actions with suitable agent actions, respectively.
We observe that Boolean formula t over Z ∪ X ∪ Y , in
fact, is compatible with the non-deferring strategy generator
T ndf = (2X∪Y , S, s0, %

ndf , τndf) introduced in Section 4.2.
More specifically, t is satisfied by interpretation (Z ∪ X ∪
Y) ∈ 2Z × 2X × 2Y iff Y ∈ τndf(s,X), where s is the cor-
responding state of Z. This is because, during the fixpoint
computation, an interpretation (Z ∪X ∪Y) ∈ 2Z × 2X × 2Y

satisfies ti+1 if: either (Z∪X∪Y) satisfies ti; or Z was iden-
tified as a new winning state (Z |= wi+1 ∧ ¬wi), and so for
every environment actionX ∈ 2X we can move from Z towi

by setting agent action to some Y ∈ 2Y as long as following
the transition function, expressed by wi(η(Z,X ,Y)). Note
that the second case restricts the agent to be non-deferring
such that the next transition will move closer to goal states.
For nondeterministic deferring strategy Πdf

ag , we compute a
boolean formula tdf over Z ∪ X ∪ Y as follows:

tdf(Z,X ,Y) = t(Z,X ,Y)∨(wi+1(Z)∧wi+1(η(Z,X ,Y))).

Note that (Z ∪X ∪Y) ∈ 2Z∪X∪Y satisfies tdf if: either (Z ∪
X ∪ Y) satisfies t, since every non-deferring strategy is a de-
ferring strategy; or the agent can move back to the winning re-
gion wi+1(Z) with another Y ∈ 2Y as long as following the
transition function, expressed by wi+1(η(Z,X ,Y)). In this
case, tdf is satisfied by interpretation (Z∪X∪Y) ∈ 2Z∪X∪Y

iff they are compatible with the deferring strategy genera-
tor T df = (2X∪Y , S, s0, %

df , τdf) such that Y ∈ τdf(s,X),
where s is the corresponding state of Z.

5.2 Empirical Evaluation
Implementation. We implemented the symbolic maxi-
mally permissive strategy computation technique for LTLf

synthesis by extending the symbolic synthesis frame-
work [Zhu et al., 2017; Tabajara and Vardi, 2019] inte-
grated in state-of-the-art synthesis tools [Bansal et al., 2020;
De Giacomo and Favorito, 2021]. In particular, we based on
LTLf synthesis tool LYDIA 2, the overall best performing tool,
and implemented our fixpoint-based computation presented
in Section 5.1. More specifically, the computation consists
of two steps. In the first step, we based on the code of LY-
DIA, to perform realizability checking, and the nondetermin-
istic non-deferring strategy is also obtained as a side-effect,
represented in Binary Decision Diagrams (BDDs). The sec-
ond step makes use of Boolean operations provided by BDD
library CUDD-3.0.0 [Somenzi, 2016] to compute the nonde-
terministic deferring strategy. 3

2https://github.com/whitemech/lydia
3Source code at https://github.com/Shufang-Zhu/SyftMax

10−3 10−2 10−1 100 101 102

Computing Single Strategy (seconds)

10−3

10−2

10−1

100

101

102

C
om

pu
ti

ng
M

ax
se

t
(s

ec
on

ds
)

Figure 1: Comparison results on realizable benchmarks.

Experiment Setup. All tests were ran on a computer clus-
ter. Each test took exclusive access to a node with Intel(R)
Xeon(R) CPU E5-2650 v2 processors running at 2.60GHz.
Time out was set to 300 seconds.
Benchmarks. We took the LTLf synthesis benchmarks
from literature [Tabajara and Vardi, 2019; Bansal et al., 2020;
De Giacomo and Favorito, 2021]. The goal of this experiment
is to evaluate the overhead caused by computing the max-
imally permissive strategy, we thus filtered the benchmarks
by taking only the realizable ones that can be solved within
the time limit, which are 391 in total.
Evaluation Results. We evaluated the overhead caused by
maximally permissive strategy computation by comparing
with the time cost of computing a single strategy, which is
represented by the time taken from receiving a synthesis in-
stance to finishing realizability checking, by then Boolean
formula t, i.e., the nondeterministic non-deferring strategy,
is also obtained. The Boolean synthesis time for “choosing”
a deterministic strategy out of t is omitted, for a fair com-
parison, since the same procedure would also be required by
“choosing” a deterministic strategy out of the maximally per-
missive strategy. Figure 1 displays a scatter plot (in log scale)
comparing the time cost of two computations for each realiz-
able instance. The gray line represents the points where the x-
axis value is equal to the y-axis value. As shown in Figure 1,
the points are closely above the gray line, this demonstrates
that computing the maximally permissive strategy only brings
minor overhead comparing to computing a single strategy.

6 Conclusions
Maximally permissive strategies are of interest when we want
to allow for maximal freedom to the agent while still achiev-
ing the desired task. We have shown that we can naturally
characterize maximally permissive strategies for LTLf speci-
fications with two nondeterministic strategies and a constraint
requiring to eventually switch from one to the other. More-
over, such a pair can be computed with minimal overhead.
Given this nice computational result, it would be interest-
ing to understand if maximally permissive strategies can be
used to benefit LTLf synthesis itself. Indeed, state-of-the-art
LTLf synthesis tools integrate techniques to compose specifi-
cations. Instead, one could compose the maximally permis-
sive strategy of each specification piece, leading to an even
smaller state space, and thus bring promising computational
benefits. We leave this for future work.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2788

Acknowledgments
This work is partially supported by the ERC Advanced Grant
WhiteMech (No. 834228), the EU ICT-48 2020 project
TAILOR (No. 952215), the PRIN project RIPER (No.
20203FFYLK), the JPMorgan AI Faculty Research Award
“Resilience-based Generalized Planning and Strategic Rea-
soning”

References
[Baier and McIlraith, 2006] Jorge A. Baier and Sheila A.

McIlraith. Planning with temporally extended goals using
heuristic search. In ICAPS, pages 342–345. AAAI, 2006.

[Banihashemi et al., 2016] Bita Banihashemi, Giuseppe De
Giacomo, and Yves Lespérance. Online agent supervi-
sion in the situation calculus. In IJCAI, pages 922–928.
IJCAI/AAAI Press, 2016.

[Banihashemi et al., 2018] Bita Banihashemi, Giuseppe De
Giacomo, and Yves Lespérance. Hierarchical agent super-
vision. In AAMAS, pages 1432–1440, 2018.

[Bansal et al., 2020] Suguman Bansal, Yong Li, Lucas M.
Tabajara, and Moshe Y. Vardi. Hybrid compositional rea-
soning for reactive synthesis from finite-horizon specifica-
tions. In AAAI, pages 9766–9774, 2020.

[Bernet et al., 2002] Julien Bernet, David Janin, and Igor
Walukiewicz. Permissive strategies: from parity games to
safety games. RAIRO Theor. Informatics Appl., 36(3):261–
275, 2002.

[Camacho et al., 2019] Alberto Camacho, Meghyn Bien-
venu, and Sheila A. McIlraith. Towards a unified view
of AI planning and reactive synthesis. In ICAPS, pages
58–67. AAAI Press, 2019.

[Cassandras and Lafortune, 2008] C. G. Cassandras and
S. Lafortune. Introduction to Discrete Event Systems.
Springer, second edition, 2008.

[Cimatti et al., 2003] Alessandro Cimatti, Marco Pistore,
Marco Roveri, and Paolo Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. 1–
2(147), 2003.

[De Giacomo and Favorito, 2021] Giuseppe De Giacomo
and Marco Favorito. Compositional approach to translate
LTLf /LDLf into deterministic finite automata. In ICAPS,
pages 122–130, 2021.

[De Giacomo and Rubin, 2018] Giuseppe De Giacomo and
Sasha Rubin. Automata-theoretic foundations of FOND
planning for LTLf and LDLf goals. In IJCAI, pages 4729–
4735, 2018.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear Temporal Logic and Linear Dy-
namic Logic on Finite Traces. In IJCAI, 2013.

[De Giacomo and Vardi, 2015] Giuseppe De Giacomo and
Moshe Y. Vardi. Synthesis for LTL and LDL on finite
traces. In IJCAI, 2015.

[De Giacomo et al., 2012] Giuseppe De Giacomo, Yves
Lespérance, and Christian J. Muise. On supervising agents
in situation-determined congolog. In AAMAS, pages
1031–1038. IFAAMAS, 2012.

[De Giacomo et al., 2013] Giuseppe De Giacomo, Fabio Pa-
trizi, and Sebastian Sardiña. Automatic behavior compo-
sition synthesis. Artif. Intell., 196:106–142, 2013.

[De Giacomo et al., 2020] Giuseppe De Giacomo, Bastien
Maubert, and Aniello Murano. Nondeterministic strate-
gies and their refinement in strategy logic. In KR, pages
294–303, 2020.

[Ehlers et al., 2017] R. Ehlers, S. Lafortune, S. Tripakis, and
M. Vardi. Supervisory control and reactive synthesis: a
comparative introduction. Discrete Event Dynamic Sys-
tems, 27(2), 2017.

[Fried et al., 2016] Dror Fried, Lucas M. Tabajara, and
Moshe Y. Vardi. Bdd-based boolean functional synthesis.
In CAV, pages 402–421, 2016.

[Geffner and Bonet, 2013] Hector Geffner and Blai Bonet. A
Concise Introduction to Models and Methods for Auto-
mated Planning. Morgan & Claypool Publishers, 2013.

[Ghallab et al., 2016] Malik Ghallab, Dana S. Nau, and
Paolo Traverso. Automated planning and acting. Cam-
bridge, 2016.

[Pnueli and Rosner, 1989] Amir Pnueli and Roni Rosner. On
the synthesis of a reactive module. In POPL, 1989.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In FOCS, pages 46–57, 1977.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. MIT, 2001.

[Sakakibara and Ushio, 2020] Ami Sakakibara and Toshim-
itsu Ushio. On-line permissive supervisory control of dis-
crete event systems for scltl specifications. IEEE Control.
Syst. Lett., 4(3):530–535, 2020.

[Somenzi, 2016] Fabio Somenzi. CUDD: CU decision di-
agram package 3.0.0. universiy of colorado at boulder.
2016.

[Tabajara and Vardi, 2019] Lucas Martinelli Tabajara and
Moshe Y. Vardi. Partitioning techniques in LTLf synthe-
sis. In Sarit Kraus, editor, IJCAI, pages 5599–5606, 2019.

[Wonham and Cai, 2019] W. Murray Wonham and Kai Cai.
Supervisory Control of Discrete-Event Systems. Springer,
2019.

[Wonham and Ramadge, 1987] WM Wonham and PJ Ra-
madge. On the supremal controllable sub-language of a
given language. SIAM J Contr. Optim., 25(3):637–659,
1987.

[Zhu et al., 2017] Shufang Zhu, Lucas M. Tabajara, Jianwen
Li, Geguang Pu, and Moshe Y. Vardi. Symbolic LTLf

synthesis. In IJCAI, pages 1362–1369, 2017.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2789

	Introduction
	Preliminaries
	Maximally Permissive Strategy
	MaxSet of ltlf Synthesis
	Deferring Strategy
	Non-Deferring Strategy
	Maximally Permissive Strategy

	Implementation and Empirical Evaluation
	Symbolic MaxSet Computation
	Empirical Evaluation

	Conclusions

