
https://doi.org/10.1007/s00165-017-0442-2
BCS © 2017
Formal Aspects of Computing (2018) 30: 193–217

Formal Aspects
of Computing

An explicit transition system construction
approach to LTL satisfiability checking
Jianwen Li1, Lijun Zhang2, Shufang Zhu1 ,Geguang Pu1, Moshe Y. Vardi3 and Jifeng He1
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China
2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
3 Computer Science, Rice University, Houston, TX, USA

Abstract. We propose a novel algorithm for the satisfiability problem for linear temporal logic (LTL). Existing
automata-based approaches first transform the LTL formula into a Büchi automaton and then perform an
emptiness checking of the resulting automaton. Instead, our approach works on-the-fly by inspecting the formula
directly, thus enabling to find a satisfying model quickly without constructing the full automaton. This makes
our algorithm particularly fast for satisfiable formulas. We construct experiments on different pattern formulas,
the experimental results show that our approach is superior to other solvers under automata-based framework.

Keywords: LTL satisfiability checking, Obligation set, LTL transition system

1. Introduction

Model-checking is an autonomous technique checking whether systems have desired properties [CGP99]. When
the model does not satisfy a given property, model-checking tools also return a counterexample, which explains
the inconsistency between the system model and desired behaviors. Model checking has led to the emergence
of assertion-based design, in which the designers first formalize their intent by means of temporal assertions
[FKL04]. At early stage of this process, models do not—or only partially—exist, thus model checking cannot
be employed yet. On the other side, it is quite likely that such assertions contain errors [PSC+06]. A basic check
of these assertions is that of satisfiability [SC85]: checking that each temporal assertion can be satisfied by some
model and the full set of assertions be satisfied together.

An in-depth empirical study of LTL satisfiability was undertaken by Rozier and Vardi [RV07, RV10]. A basic
observation underlying their work is that LTL satisfiability checking can be reduced to model checking. Consider
an LTL formula ϕ over a setProp of atomic propositions. If a modelM is universal, that is, it contains all possible
traces over Prop, then ϕ is satisfiable precisely when the model M does not satisfy ¬ϕ. Thus, it is easy to add a
satisfiability-checking feature to LTL model-checking tools.

Correspondence and offprint requests to: S. Zhu and G. Pu, E-mails: sei zsf2010@126.com; ggpu@sei.ecnu.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-017-0442-2&domain=pdf
http://orcid.org/0000-0002-5922-8750


194 J. Li et al.

LTL model checkers can be classified as explicit or symbolic. Explicit model checkers, such as SPIN [Hol97]
or SPOT [DLP04], construct the state-space of the model explicitly and search for a trace falsifying the assertion
[CVWY92]. In contrast, symbolic model checkers, such as CadenceSMV [McM99] or NuSMV [CCGR00],
represent the model and analyze it symbolically using binary decision diagrams (BDDs) [BCM+92]. Generally,
LTLmodel checkers follow the automata-theoretic approach [VW86], in which the complemented LTL assertion
is explicitly or symbolically translated to a Büchi automaton, which is then composed with the model under
verification; see also [Var07]. The model checker checks for nonemptiness, by searching for a trace of the model
that is accepted by the automaton.

Rozier andVardi [RV07, RV10] carried out an extensive experimental investigation of LTL satisfiability check-
ing via a reduction to model checking. By using large LTL formulas, they offered challenging model-checking
benchmarks to both explicit and symbolicmodel checkers. For symbolicmodel checking, they usedCadenceSMV
and NuSMV. For explicit model checking, they used SPIN as the search engine, and tested essentially all publicly
available LTL translation tools. They used a wide variety of benchmark formulas, either generated randomly, as
in [DGV99], or using scalable patterns.

Rozier and Vardi reached two major conclusions. First, most LTL translation tools are research prototypes
and cannot be considered industrial quality tools. Among all the tools tested, only SPOT can be considered an
industrial quality tool. Second, when it comes to LTL satisfiability checking, the symbolic approach is clearly
superior to the explicit approach. Even SPOT, the best LTL translator in our experiments, was rarely able to
compete effectively against the symbolic tools.

The evidence marshaled by Rozier and Vardi for the conclusion in favor of the symbolic approach is quite
compelling, but a close examination shows that it applies only to satisfiability checking via model checking. That
is, if one chooses to perform satisfiability checking via a reduction tomodel checking, then the symbolic approach
offers superior performance. It is conceivable, however, that a direct explicit approach to satisfiability checking
would outperform the symbolic approach. In explicit model checking, it is possible to perform the nonemptiness
test on the fly, that is, by letting the search algorithm drive the construction of the automaton [CVWY92]. (In
fact, the on-the-fly approach was proposed also for model checking, but was not adopted by SPIN due to its
software architecture [Hol97]).

In this paper we revisit the LTL satisfiability problem to examine the advantage of the on-the-fly approach.
The driving intuition is that the on-the-fly approach may be quite advantageous in satisfiability checking, since
it enables finding a model quickly without constructing the full automaton. Furthermore, the sole focus on
satisfiability checking may be amenable to various heuristics that are not applicable in the context of model
checking. We report here on a novel LTL satisfiability checking tool, Aalta, and demonstrate that it outperforms
both SPOT and CadenceSMV.

For a sketch of our approach, we first propose the concept of obligation set for every LTL formula, which is
a set of obligations. An obligation is a set of literals that should be fulfilled before the formula can be satisfied.
The whole obligation set thus collects all possibilities that can make the formula satisfiable. By observing the
obligations, there is an interesting and useful property that a consistent obligation directly implies the satisfiability
of the formula. For example, take the formulawith the pattern ofϕUa whereϕ means arbitrary formula. This until
formula has the obligation {a}, (obligation set {{a}}) based on our definition later.Meanwhile, {a} is a consistent
obligation due to the sole boolean formula a, which makes the formula ϕUa be satisfiable. The heuristics can
highly speed up the checking process for satisfiable cases. In the general case, if no consistent obligation can be
found in the formula, we expand the formula with the on-the-fly manner to search an accepting SCC (Strongly
Connected Component)in the expanded system (which we call the transition system). During the process the
algorithm returns SAT if either a consistent obligation or an accepting SCC is found. Otherwise in the worst case,
the algorithm returns UNSAT after the whole transition system has been explored.

To substantiate our approach we first revisit the experimental methodology of Rozier and Vardi [RV11]. Their
focus has been on testing satisfiability of large LTL formulas, either scalable patterns or random ones. But typical
temporal assertions are rather small [DAC98]. What makes the LTL satisfiability problem hard is the fact that
we need to check large conjunctions of small temporal formulas. We describe here a new class of challenging
benchmarks, which are random conjunctions of specification patterns from [DAC98]. Our conclusions on the
superiority ofAalta are based both on the benchmarks ofRozier andVardi and the newly introduced benchmarks.



An explicit transition system construction approach to LTL satisfiability checking 195

An early version [LZP+13] of this approach has been published. This paper is an extension of the previous
version and contains the following additional work. (1) The missing proofs are included. We provide a more
detailed and precise proof of the central theorem.We introduce the notion of looping formula and discover more
properties of it which is presented in Sect. 3.5. Then we prove the soundness and completeness of the central
theorem, which gives a boost to our algorithm. (2) In the experimental part, we present the architecture of our
toolAalta and introduce the implementation of it. (3) We also did more experiments on missing pattern formulas
and the experimental results in 4.2.3 can show the effectiveness of the accelerating technique.

The organization of the paper is as follows.We provide preliminary materials in Sect. 2. In Sect. 3, we describe
the novel algorithm underlying Aalta. In Sect. 4, we detail our experimental methodology and experimental
results. Section 5 discusses related work and Sect. 6 concludes the paper.

2. Preliminaries

2.1. Linear temporal logic

Let AP be a set of atomic properties. The syntax of LTL formulas is defined by:

ϕ ::� tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕUϕ | ϕR ϕ | Xϕ

where a ∈ AP is called an atom, ϕ is an LTL formula.We use the usual abbreviations:Fa � ttUa, andGa � ffRa.
We say ϕ is a propositional formula if it does not contain temporal operators. We say ϕ is a literal if ϕ is

an atom or its negation. We use L to denote the set of literals, lower case letters a, b, c for atoms, li (i ≥ 0) for
literals, α, β, γ for propositional formulas, and λ, ϕ,ψ for LTL formulas. Note that, w.l.o.g., we are considering
LTL formulas in negation normal form (NNF)—all negations are pushed in front of only atoms. LTL formulas
are often interpreted over (2AP )ω. Since we consider LTL in NNF forms, literals are the unit and thus formulas
are considered to be interpreted on infinite sequences over the alphabet 	 :� 2L, i.e., infinite sequences of sets of
literals.

A trace ξ � ω0ω1ω2 . . . is an infinite sequence over 	ω. For ξ and k ≥ 1 we use ξk � ω0ω1 . . . ωk−1 to
denote the prefix of ξ up to its k -th element, and ξk � ωkωk+1 . . . to denote the suffix of ξ from its (k + 1)-th
element. Thus, ξ � ξkξk . We use η, η0 . . . to denote finite sequences in 	∗. Let A be a literal set and denote that∧

A � a1 ∧ a2 ∧ . . . ∧ an when | A |� n and ai ∈ A(1 ≤ i ≤ n). Then we define the notion of consistent traces
first:

Definition 2.1 (Consistent trace).We say a literal setA is consistent iffA does not contain an atom and its negation
at the same time. A trace ξ � ω0ω1 . . . is consistent iff ωi is consistent for all i .

For example, the literal set {a, b} is consistent, while {a,¬a} is not according to the definition.
Let ω ∈ 	 be a consistent set of literals, and α a propositional formula. We define ω |� α in the standard way:

if α is a literal then ω |� α iff α ∈ ω, ω |� α1 ∧ α2 iff ω |� α1 and ω |� α2, and ω |� α1 ∨ α2 iff ω |� α1 or ω |� α2.
Moreover, ω |� tt and ω 	|� ff.

The semantics of temporal operators with respect to a consistent trace ξ is given by: ξ |� α iff ξ 1 |� α; ξ |� X ϕ
iff ξ1 |� ϕ; and

1. ξ |� ϕ1 U ϕ2 iff there exists i � 0 such that ξi |� ϕ2 and for all 0 � j < i , ξj |� ϕ1;
2. ξ |� ϕ1 R ϕ2 iff either ξi |� ϕ2 for all i ≥ 0, or there exists i ≥ 0 with ξi |� ϕ1 ∧ ϕ2 and ξj |� ϕ2 for all

0 ≤ j < i ;

According to the semantics, it holds that ϕRψ � ¬(¬ϕU¬ψ). For two LTL formulas ϕ1 and ϕ2, we denote
ϕ1 ≡ ϕ2 iff ϕ1 and ϕ2 are semantically equivalent, i.e. for any trace ξ , ξ |� ϕ1 iff ξ |� ϕ2.

Definition 2.2 (Satisfiability). We say ϕ is satisfiable, denoted by SAT(ϕ), if there exists a consistent trace ξ such
that ξ |� ϕ.



196 J. Li et al.

In the remainder of this paper, if not stated explicitly, all traces considered are assumed to be consistent.
Notation. We define some notation that we use throughout this paper.

• For a formula ϕ, we use cl (ϕ) to denote the set of subformulas of ϕ. We denote by APϕ the set of atoms
appearing in ϕ, by Lϕ the set of literals over APϕ , and by 	ϕ the set of consistent literal sets over APϕ .

• Let ϕ � ∧
i∈I ϕi such that the root operator of ϕi is not a conjunctive. We define the set of conjuncts of ϕ

as CF (ϕ) :� {ϕi | i ∈ I }. When ϕ does not include a conjunctive as a root operator, CF (ϕ) includes only ϕ
itself. The set of disjuncts DF (ϕ) is defined in an analogous way.

• For a formula ϕ of the form ϕ1Uϕ2 or ϕ1Rϕ2, let left(ϕ) (right(ϕ)) be left (right) subformulas of ϕ.
• For each propositional formula α appearing in the paper, we always check first whether α is satisfiable. If not,
we shall replace α by ff.

2.2. Normal form expansion

Our algorithm extends the given formula based on the notion of normal form for LTL formulas defined as follows:

Definition 2.3 (Normal form). The normal form of an LTL formula ϕ, denoted asNF(ϕ), is a set defined as follows:

1. NF(ϕ) � {ϕ ∧ X (tt)} if ϕ 	≡ ff is a propositional formula. If ϕ ≡ ff, we define NF(ff) � ∅;
2. NF(Xϕ) � {tt ∧ X (ψ) | ψ ∈ DF (ϕ)};
3. NF(ϕ1Uϕ2) � NF(ϕ2) ∪ NF(ϕ1 ∧ X (ϕ1Uϕ2));
4. NF(ϕ1Rϕ2) � NF(ϕ1 ∧ ϕ2) ∪ NF(ϕ2 ∧ X (ϕ1Rϕ2));
5. NF(Fϕ1) � NF(ϕ1) ∪ NF(XFϕ1);
6. NF(Gϕ1) � NF(ϕ1 ∧ XGϕ1);
7. NF(ϕ1 ∨ ϕ2) � NF(ϕ1) ∪ NF(ϕ2);
8. NF(ϕ1 ∧ ϕ2) � {(α1 ∧ α2) ∧ X (ψ1 ∧ ψ2) | ∀ i � 1,2. αi ∧ X (ψi ) ∈ NF(ϕi )};

For each α ∧ Xϕi ∈ NF(ϕ), we call α a current formula and ϕi is a next formula of ϕ. From the definition it is
obvious that if α ∧ X (ψ) ∈ NF(ϕ), then α is a conjunctive clause, namely a conjunction of literals.

For a formula ϕ, our algorithm will detect successor formulas based on the set NF(ϕ). First, we shall show
that the formula ϕ is logically equivalent to

∨
NF(ϕ), here

∨
NF(ϕ) represents the formula

∨
1≤j≤k (αj ∧ Xϕj )

with αj ∧ Xϕj ∈ NF(ϕ) and k �| NF(ϕ) |. We note that the empty disjunction (OR-ing over an empty set of
operands) is defined as ff. Then, we establish the equivalence property:

Theorem 2.1 For the formula ϕ, it holds that ϕ ≡ ∨
NF(ϕ).

Proof We prove it by structural induction over ϕ:

• The case that ϕ is a propositional formula or a next formula is trivial by definition.
• If ϕ � ϕ1 ∨ ϕ2, then applying induction hypothesis we have ϕ ≡ ϕ1 ∨ ϕ2 ≡ ∨

NF(ϕ1) ∨ ∨
NF(ϕ2) ≡∨

(NF(ϕ1) ∪ NF(ϕ2)) ≡ ∨
NF(ϕ1 ∨ ϕ2).

• If ϕ � ϕ1 ∧ ϕ2, then applying induction hypothesis we have ϕ ≡ ϕ1 ∧ ϕ2 ≡ (
∨
NF(ϕ1)) ∧ (

∨
NF(ϕ2)). By

inspection, this is equivalent to
∨
NF(ϕ1 ∧ ϕ2).

• If ϕ � ϕ1Uϕ2, then by Definition 2.3 we knowNF(ϕ) � NF(ϕ2)∪NF(ϕ1 ∧Xϕ), and that ϕ ≡ ϕ2 ∨ (ϕ1 ∧Xϕ).
By induction hypothesis we have that ϕ2 ≡ ∨

NF(ϕ2). Moreover, we also proved previously that ϕ1 ∧ Xϕ ≡∨
NF(ϕ1 ∧ Xϕ). Thus we can prove that ϕ ≡ ϕ2 ∨ (ϕ1 ∧ Xϕ) ≡ ∨

NF(ϕ2) ∨ ∨
NF(ϕ1 ∧ Xϕ) ≡ ∨

NF(ϕ);
• If ϕ � ϕ1Rϕ2, then fromDefinition 2.3 we haveNF(ϕ) � NF(ϕ1∧ϕ2)∪NF(ϕ2∧Xϕ) and ϕ ≡ (ϕ1∧ϕ2)∨ (ϕ2∧

Xϕ). By induction hypothesis we have that ϕ1 ∧ ϕ2 ≡ ∨
NF(ϕ1 ∧ ϕ2). Moreover, we also proved previously

that ϕ2 ∧ Xϕ ≡ ∨
NF(ϕ2 ∧ Xϕ). Thus we can prove that ϕ ≡ (ϕ1 ∧ ϕ2) ∨ (ϕ2 ∧ Xϕ) ≡ ∨

NF(ϕ1 ∧ ϕ2) ∨∨
NF(ϕ2 ∧ Xϕ) ≡ ∨

NF(ϕ); �

The theorem below states that along the expansion the set of subformulas is non-increasing(except the con-
stant tt):

Theorem 2.2 If α ∧ Xψ ∈ NF(ϕ), then CF (ψ) ⊆ cl (ϕ) ∪ {tt}.



An explicit transition system construction approach to LTL satisfiability checking 197

Proof First, let cl ′(ϕ) � cl (ϕ) ∪ {tt}. We prove that CF (ψ) ⊆ cl ′(ϕ) by structural induction over ϕ. The base
cases ϕ � tt,ff and propositional formulas are trivial. Otherwise:

• If ϕ � ϕ1 ∨ ϕ2. Then NF(ϕ) � NF(ϕ1) ∪ NF(ϕ2). So α ∧ Xψ ∈ NF(ϕi ) with i � 1 or i � 2. By induction
hypothesis we have CF (ψ) ⊆ cl ′(ϕi ) ⊆ cl ′(ϕ).

• If ϕ � Xϕ1. In this case we have NF(ϕ) � {tt ∧ Xϕ′
1 | ϕ′

1 ⊆ DF (ϕ1)}. Since CF (ϕ′
1) ⊆ cl ′(ϕ1) ⊆ cl ′(ϕ), so we

have CF (ψ) ⊆ cl ′(ϕ).
• Ifϕ � ϕ1∧ϕ2, thenwe know for everyα∧Xψ ∈ NF(ϕ) there existsα1∧Xψ1 ∈ NF(ϕ1) andα2∧Xψ2 ∈ NF(ϕ2)
such that α � α1 ∧ α2 and ψ � ψ1 ∧ ψ2. Since by induction hypothesis we know CF (ψ1) ⊆ cl ′(ϕ1) and
CF (ψ2) ⊆ cl ′(ϕ2), so CF (ψ) ⊆ cl ′(ϕ) holds.

• If ϕ � ϕ1Uϕ2 then we have two cases: Either we have the right expansion α ∧ Xψ ∈ NF(ϕ2), in which
case CF (ψ) ⊆ cl ′(ϕ2) ⊆ cl ′(ϕ) follows directly by induction hypothesis. For the left expansion case, we
have α ∧ Xψ ∈ NF(ϕ1 ∧ Xϕ), implying that there exists α1 ∧ Xψ1 ∈ NF(ϕ1) such that ψ � ψ1 ∧ ϕ. So
CF (ψ) ⊆ cl ′(ϕ) follows by exploiting the induction hypothesis that CF (ψ1) ⊆ cl ′(ϕ1) ⊆ cl ′(ϕ).

• If ϕ � ϕ1Rϕ2 then we also have two cases: Either we have α ∧ Xψ ∈ NF(ϕ1 ∧ ϕ2), in which case CF (ψ) ⊆
cl ′(ϕ1 ∧ ϕ2) ⊆ cl ′(ϕ) ∪ {ϕ1 ∧ ϕ2} follows directly by induction hypothesis. Since ϕ1 ∧ ϕ2 cannot be in CF (ψ)
as from the definition of CF (ψ) a conjunction formula cannot be its element. For the other case, we have
α∧Xψ ∈ NF(ϕ2∧Xϕ), implying that there existsα1∧Xψ1 ∈ NF(ϕ2) such thatψ � ψ1∧ϕ. SoCF (ψ) ⊆ cl ′(ϕ)
follows by exploiting the induction hypothesis that CF (ψ1) ⊆ cl ′(ϕ2) ⊆ cl ′(ϕ). �

2.3. LTL transition system

Let ϕ be an LTL formula and α ∧ Xϕ1 be an element of NF(ϕ). Essentially α ∧ Xϕ1 ∈ NF(ϕ) means that if the
current property α can be satisfied, then ϕ can go to the next state (formula) ϕ1. Recursively the same process
can be done on ϕ1 and there are also new next formulas generating from ϕ1. Following this intuition, we can
construct a transition system for ϕ, in which all next formulas (including ϕ) are states and current formulas are
labels on the edges. Formally, for a given formula ϕ we define as below a labeled transition system Tϕ :

Definition 2.4 (LTL transition system). Let ϕ be the input formula. The labeled transition system Tϕ is a tuple
〈Act,Sϕ,−→, ϕ〉 where:
1. ϕ is the initial state;
2. Act is the set of conjunctive formulas over Lϕ ;

3. the transition relation −→ ⊆ Sϕ × Act × Sϕ is defined by: ψ1
α−→ ψ2 iff there exists α ∧ X (ψ2) ∈ NF(ψ1);

4. Sϕ is the smallest set of formulas such that ψ1 ∈ Sϕ , and ψ1
α−→ ψ2 implies ψ2 ∈ Sϕ .

From the definition above, the set of states is the set of formulas reachable from ϕ, with ϕ being the initial
state. Also there can be more transitions between two states. There is no outgoing transition in a state ϕ iff for
all α ∧ Xψ ∈ NF(ϕ) s.t. α is equivalent to ff. In this case ϕ is not satisfiable. Now we introduce the notion of
accepting traces:

Definition 2.5 A run of Tϕ is an infinite path r � ϕ
α0−→ ψ1

α1−→ ψ2
α2−→ . . . in Tϕ . A trace ξ � ω0ω1 . . . ∈ 	ω is

accepted by the run r if ωi |� αi for all i .

For ω ∈ 	, we write ϕ
ω−→ ψ if there exists ϕ

α−→ ψ such that ω |� α. For a finite sequence η � ω0ω1..ωk , we

write ϕ
η−→ ψ iff ϕ

ω0−→ ψ1
ω1−→ ψ2

ω2−→ . . .
ωk−→ ψk+1 � ψ . More specially, we write ϕ

ξ−→ ϕ iff ξ can be written as
ξ � η0η1η2 . . . such that ηi is a finite sequence and ϕ

ηi−→ ϕ for all i ≥ 0.
Theorem 2.2 implies the following properties of | Sϕ |:

Corollary 2.1 For any formula ϕ, it holds:

1. for all ψ ∈ Sϕ , it holds CF (ψ) ⊆ cl (ϕ) ∪ {tt},
2. | Sϕ |≤ 2n + 1 where n denotes the number of subformulas of ϕ.

Proof The first clause follows by a simple induction over the path from ϕ → ψ . That means:

• Base case, if ψ satisfies α ∧ Xψ ∈ NF(ϕ) for some α, then from Theorem 2.2 one can directly get that
CF (ψ) ⊆ cl (ϕ) ∪ {tt};



198 J. Li et al.

• Inductive case, if there exists ψ ′ ∈ Sϕ such that CF (ψ ′) ⊆ cl (ϕ) ∪ {tt} holds, then for each ψ satisfying
α ∧ Xψ ∈ NF(ψ ′) it holds that CF (ψ) ⊆ cl (ψ ′) ∪ {tt}. Thus, it is true that CF (ψ) ⊆ cl (ϕ) ∪ {tt}.

The second clause is obtained directly from the first one. Note the constant 1 is due to the possibility of producing
tt along the expansion. �

3. New satisfiability checking algorithm

In this section we introduce our new satisfiability checking algorithm explicitly.We first illustrate the main idea of
our methodology by showing some running examples. Note that some concepts may be used before their formal
definitions are given when we introduce the sketch of our approach.

3.1. Approach overview

Wefirst illustrate themain idea of our algorithm. The key of our on-the-fly approach is the notion of obligation set
(Definition 3.2). As we show below, satisfying an obligation set gives a sufficient condition for satisfying a given
formula. For a given formula, the obligation set contains several possible obligations, each obligation consists of
some literals that characterize a possible way of satisfying the formula. We give the flavor of this notion in terms
of a few examples:

• for the formula aUb or aRb the obligation set is {{b}};
• for the formula

∨
1≤i≤n aiUbi the obligation set is {{b1}, {b2}, . . . , {bn}};

• for the formula
∧

1≤i≤n aiUbi the obligation set is {{b1, b2, . . . , bn }}.
For a formula ϕ, if one of its obligations O ⊆ 2L is consistent, i.e.

∧
a∈O a 	≡ ff, the trace ξ � Oω is

consistent, and moreover, it satisfies the corresponding formula (ϕ). If there is no consistent obligation, we
construct a Transition System Tϕ for ϕ with on-the-fly manner. As introduced previously, states of Tϕ consist of
reachable formulas, and transitions are obtained by unrolling the state formula according to the normal form
expansion.

For technical reasons, our construction requires the input formula ϕ to be tagged before the system construc-
tion. The goal is to distinguish atoms coming from different Until subformulas of ϕ. For a ∈ APϕ , there may be
several copies of a in ϕ: taking ϕ � aU (a ∧ b) as an example and there are two copies of a in ϕ. Tagging ϕ would
distinguish these two as in ϕ, which results in a new formula ϕt � a1U (a2 ∧ b). However it should be mentioned
that, tagging does not affect the semantics of the original formula, it only involves in changes on the syntactical
level. In other words, although in ϕt � a1U (a2 ∧ b) it does not hold a1 � a2 (syntactically equivalent), it is true
that a1 ≡ a2(semantically equivalent).

On the construction process ofTϕ , by taking actually ϕt as the input, our algorithm is seeking such an SCCB
of Tϕ that literals along the edges of B is the superset of some obligation of ψ where ψ is a state in B . To present
briefly we name such SCC is an accepted SCC. Finally if no accepted SCC can be found after the whole transition
system Tϕ is established, which is considered as the worst case, our algorithm returns the result of unsatisfiable
for the input formula ϕ.

weneedfirst to tag the subformulas such that all the literals are identifiedby their positions inuntil subformulas.
We need the notion of accepting SCCs:

Definition 3.1 Let an SCC (Strongly Connected Component) B of a transition system T be a sub-system of T
such that all states in B are connected by others. Moreover, we denote by L(B ) the set of all literals appearing in
transitions between states in B . We say B is accepting if L(B ) is a superset of some obligation O ∈ Olg(ψ) and
ψ ∈ B .

We show that the formula is satisfiable if an SCC is found that contains a consistent obligation.
Summarizing, combining with the trivial on-the-fly checking, our approach works as follows:

1. If a consistent obligation is found in the processed states so far, then the formula is satisfiable;
2. If an accepting SCC is found during the generation of the transition system, then the formula is also satisfiable.
3. In the worst case, the formula is unsatisfiable after exploring whole transition system.



An explicit transition system construction approach to LTL satisfiability checking 199

ϕtstart

ϕ1 ϕ2

tt

a1

¬a2

tt

a1
¬a2

tta1 ¬a2

Fig. 1. The transition system of ϕ � GFa ∧ GF¬a . Here ϕt � GFa1 ∧ GF¬a2 is the tagged formula of ϕ. Also ϕ1 � ϕt ∧ F¬a and
ϕ2 � ϕt ∧ Fa

ϕtstart ϕ1

tt
a1

a1

Fig. 2. The transition system of ϕ � Ga ∧ GF¬a . Here ϕt � Ga1 ∧ GF¬a2 is the tagged formula of ϕ, and ϕ1 � ϕ ∧ F¬a

Here we provide some examples to illustrate the process of our approach.

Example 1 (i) Ga is directly satisfiable without unrolling since it contains a consistent obligation {a}, according
to the first process of the algorithm;

(ii) GFa1 ∧ GF¬a2 is satisfiable, as an accepting SCC (ϕ1
¬a2−−→ ϕ2

a1−→ ϕ1) can be found in its corresponding
transition system (see Fig. 1).

(iii) Ga1 ∧ GF¬a2 is unsatisfiable, as no accepting SCC can be found in its corresponding transition system (see
Fig. 2).

Tagging the formula may cause potential larger size of the generated transition system, and we leave the
discussion in Sect. 3.3. Now we present our approach explicitly in the following subsections.

3.2. Obligation set

The key of our on-the-fly satisfiability algorithm is the notion of obligation set, which is defined for the input
formula ϕ:

Definition 3.2 (Obligation set). For a formula ϕ, we define its obligation set, denoted by Olg(ϕ), as follows:

1. Olg(tt) � {∅} and Olg(ff) � {{ff}};
2. If ϕ is a literal, Olg(ϕ) � {{ϕ}};
3. If ϕ � Xψ , Olg(ϕ) � Olg(ψ);
4. If ϕ � ψ1Uψ2 or ψ1Rψ2, Olg(ϕ) � Olg(ψ2);
5. If ϕ � ψ1 ∨ ψ2, Olg(ϕ) � Olg(ψ1) ∪ Olg(ψ2);
6. If ϕ � ψ1 ∧ ψ2, Olg(ϕ) � {O1 ∪ O2 | O1 ∈ Olg(ψ1) and O2 ∈ Olg(ψ2)}.

For O ∈ Olg(ϕ), we refer to it as an obligation of ϕ. Moreover, we say O is a consistent obligation iff
∧

a 	≡ ff
holds, where a ∈ O .

The obligation set Olg(ϕ) enumerates all obligations the given formula ϕ is subject to. Each obligation O ∈
Olg(ϕ) characterizes a possible way to resolve the obligations proposed by the formula, in the sense that a
formula is satisfiable if one of its obligations can be resolved accordingly. It means that the resolved obligation
is a consistent obligation. Note that the particular obligation {ff} can never be resolved. The obligation {tt} is
consistent.



200 J. Li et al.

The power of this characterization is best explained by the following theorem:

Theorem 3.1 Assume O ∈ Olg(ϕ) is a consistent obligation. Then, Oω |� ϕ.

Proof We prove it by structural induction over ϕ. The basic cases when ϕ is tt,ff and any literal are trivial. For
the induction step we consider:

• If ϕ � Xψ then we have O ∈ Olg(ϕ) � Olg(ψ). By inductive hypothesis we have Oω |� ψ . Thus, Oω |� ϕ as
well;

• If ϕ � ϕ1Uϕ2 then we have O ∈ Olg(ϕ2), according to the definition of obligation set (Definition 3.2). By
inductive hypothesis we have Oω |� ϕ2. Moreover according to LTL semantics we know Oω |� ϕ as well;

• If ϕ � ϕ1Rϕ2 then we have O ∈ Olg(ϕ2), from Definition 3.2. By inductive hypothesis we have Oω |� ϕ2.
Moreover according to LTL semantics we know Oω |� ϕ;

• If ϕ � ϕ1 ∨ ϕ2, we have O ∈ Olg(ϕ1) or O ∈ Olg(ϕ2). Assume O ∈ Olg(ϕ2) without loss of generality. By
inductive hypothesis we have Oω |� ϕ2, implying Oω |� ϕ as well;

• If ϕ � ϕ1 ∧ ϕ2 then there exist O1 ∈ Olg(ϕ1) and O2 ∈ Olg(ϕ2) such that O � O1 ∪ O2. Since O is consistent
so both O1 and O2 must be consistent. By inductive hypothesis we have Oω

1 |� ϕ1 and Oω
2 |� ϕ2. Again since

O is consistent we have Oω |� ϕ1 ∧ ϕ2. �

We illustrate the usefulness of the theorem by the following example:

Example 2 (i) ConsiderG(aRb). It has only one obligation {b} which is consistent. Thus, the trace {b}ω satisfies
G(aRb).

(ii) Consider the formula ϕ :� GF (a ∧ b)∧F (¬a): first, the obligation {a, b,¬a} is not consistent. Further, the
normal form NF(ϕ) contains ¬a ∧ X (GF (a ∧ b))). Thus we can reach the formula GF (a ∧ b) along ¬a.
Moreover, GF (a ∧ b) has a consistent obligation set O � {a, b}. Theorem 3.1 then provides a trace ξ with:
ξ :� {¬a}Oω |� ϕ.

(iii) The opposite direction of Theorem 3.1 does not hold. Consider for example the formula F (a) ∧ G(X¬a).
It has a single obligation {a,¬a} which is not consistent. However, {a}{¬a}ω is a satisfying trace. Consider
another formula F (a) ∧ G(¬a) which has the same obligation. This formula is obviously not satisfiable.

Theorem 3.1 is indeed very useful: it returns an affirmative answer as soon as a consistent obligation is found
for the current candidate. In the following sections, we exploit this notion to derive an on-the-fly algorithm for
all formulas.

3.3. Tagging input formulas

First, from the discussions and definitions above, we observe that the obligation set ignores the left subformulas
of until and release operators. If Theorem 3.1 does not give an affirmative answer, the left subformulas then play a
role in our construction. As a preparation for the general case, we first need to tag the atoms in the input formula
in our approach such that they can be differentiated. The example below illustrates why tagging is useful in our
construction:

Example 3 Consider ϕ :� (a ∨ b)U (Ga), in which the atom a appears twice. Without tagging, we can see there

exists a transition ϕ
a−→ ϕ

b−→ ϕ which forms a SCC B , and L(B ) � {a, b} is a superset of the obligation {a}.
However, obviously, the infinite path through this SCC can not satisfy ϕ.

On the other side, our algorithm first tags the formula to ϕt � (a1 ∨ b)U (Ga2). Then the transition system
for the tagged formula will be constructed. The tagged SCC B has label L(B ) � {a1, b} which is not a superset

of the obligation {a2}. Thus B is not an accepting SCC, and the infinite path through SCC ϕ
a1−→ ϕ

b−→ ϕ can not
satisfy ϕ.

We need some notations to formalize the tagging process. Consider a given input formula ϕ. For each atom a
appearing in ϕ, we enumerate all occurrences of a by Sa :� {a1, a2, . . . , an}, provided a appears n times in ϕ. The
easiest tagging function is the identity function, i.e., we consider all ai syntactically different, but semantically
equivalent. The complexity of our approach will depend on the number of syntactically different atoms. This
tagging is inefficient: below we give an improved tagging function.



An explicit transition system construction approach to LTL satisfiability checking 201

Given a formula ϕ we denote U (ϕ) the set of until subformulas of ϕ and right(ϕ) the set of right subformulas
of ϕ. Then:

Definition 3.3 (Tagging formula). Let a ∈ AP be an atom appearing in ϕ. Then, the tagging function Fa : Sa →
2U (ϕ) is defined as: ψ ∈ Fa (ai ) iff ai appears in right(ψ).

We define the tagged formula ϕt as the formula obtained by replacing ai by aFa (ai ) for each ai ∈ Sa .

Thus, after tagging APϕt
will contain more atoms. Note that all these new copies are semantically equivalent

to a, i.e., aFa (ai ) ≡ a for all aFa (ai ). Given a tagging function Fa , two copies ai , aj are syntactically equivalent iff
Fa (ai ) � Fa (aj ). More explicitly, a1 � a2 ⇔ Fa (a1) � Fa (a2).

As an example, consider ϕ � aU (a ∧aU¬a). Letψu � aU¬a, and Sa � {a1, a2, a3, a4}. FromDefinition 3.3
we know Fa (a1) � ∅,Fa (a2) � Fa (a3) � {ϕ}, and Fa (a4) � {ϕ, ϕu}. So the tagging function will introduce three
syntactically different copies of a, and we denote ϕt by a1U (a2 ∧ a2U¬a4). Here even a1, a2, a4 are syntactically
different, they are semantically equivalent. Thus it holds for example a2 ∧¬a4 ≡ ff. The size of subformulas may
increase after tagging. According to Definition 3.3, the following lemma is obvious:

Lemma 3.1 (Tagging Cost). Let ϕ be the input formula and ϕt the formula obtained after tagging ϕ. Then,
| cl (ϕt ) |≤ 2m · | cl (ϕ) |, where m �| U (ϕ) |.
Proof It can be directly proven following Definition 3.3. �

We note that for all formula ϕ, it holds ϕ ≡ ϕt . This implies SAT(ϕ) iff SAT(ϕt ). As our approach will work
with the tagged formula ϕt , in the remaining of the paper:
• Syntactically: for a given input formula ϕ, all atoms are ranging over the tagged atoms appearing in ϕt , thus

AP � APϕt
, L � Lϕt

and 	 � 	ϕt
� 2L.

• Semantically: tagged atoms are equivalent to the original atom. Thus, the notion of consistent traces and
consistent obligations are defined by taking the semantical equivalences of tagged atoms into consideration.

In the next section we present our core satisfiability checking algorithm.

3.4. On-the-fly satisfiability algorithm

First, we introduce some notations for convenience:
• We fix λ as our input formula in this section. Let Tλ be the transition system for the tagged formula λt .
• For all ϕ ∈ Sλ, we denote STϕ the subsystem of Tλ consisting all states reachable from ϕ.

Now we present our main theorem:

Theorem 3.2 Let ϕ ∈ Sλ. Then, SAT(ϕ) iff there exists a SCC B of STϕ and a state ψ in B such that L(B ) is a
superset of some obligation O ∈ Olg(ψ).

The full proof is given in the next section. We sketch the proof idea first, which is best illustrated in Fig. 3.
Let ξ � ω0ω1 . . . be a (consistent) trace such that ξ |� ϕ. Then, there is a run in STϕ accepting ξ , i.e., we have
ϕ

ω0−→ ψ1
ω1−→ . . .. After some prefix ξn , since there are only finitely many states reachable, we will be able to

partition the suffix into η1η2 . . . where all ηi are finite sequences, and all ηi lead from ψ to ψ itself. Such formula
ψ will be referred to a looping formula.

Looping formulas arising from U and R operators must be treated differently. For instance aRb b−→ aRb
resolves the obligation {b}, however aUb a−→ aUb does not. To characterize this difference, we shall memorize
atoms appearing along the edges and check whether the obligation {b} is met. Interestingly, R operators are easy
to handle, but things get more involved if the same atom appears on both sides of U operators, such as aUa.
Here we make use of the fact that we are working on the tagged formula, and our transition system is labeled
with tagged atoms. Thus we can efficiently check whether appearing atoms correspond to those obligations forU
formulas. With these notions, the theorem can be proven by the following idea: any edge label is a propositional
formula that is not ff, thus any run in the transition system induces a consistent trace, which can be proven
to satisfy the formula iff the collected atoms along the trace can produce an obligation. Thus, the formula is
satisfiable if and only if we can find an SCC B such that O ⊆ L(B ).

The above theorem states that the satisfiability of an LTL formula λ can be checked directly on the transition
system Tλ. Together with Theorem 3.1, we arrive at the following on-the-fly algorithm, which we refer to as
OFOA(λ):



202 J. Li et al.

Fig. 3. A snapshot illustrating the relation ξ |� ϕ

1. Whenever a formula is found, we compute the obligation set. In case that it contains a consistent obligation
set, we return true because of Theorem 3.1 (line 1–2 in Algorithm 1);

2. The algorithm is processed with the depth-first manner (line 3 and 7–9 in Algorithm 1)

3. If a SCC B is reached, ϕ ∈ B , and L(B ) is a superset of some obligation set O ∈ Olg(ϕ), then we return true
(line 4–6 in Algorithm 1);

4. If all SCCs are explored, and all do not have the property in step 3, we return false (line 10 in Algorithm 1).

Algorithm 1: The pseudo-code of OFOA algorithm.
Input: The tagged formula λt ;
Output: SAT or UNSAT.

1 if λt has a consistent obligation then
2 return SAT;

3 for each α ∧ Xϕ ∈ NF(λt ) do
4 if ϕ is visited then
5 if there is an accepting SCC containing ϕ then
6 return SAT;

7 else
8 if OFOA(ϕ) returns SAT then
9 return SAT;

10 return UNSAT;

We discuss briefly the complexity of the proposed algorithm. First, we remark that the worst case scenario
happens if all extended formulas do not contain any consistent sets, which happens for instance for the formula
GF (a)∧GF (¬a).Given the input formulaλ, we first constructλt . ByLemma3.1,wehave | cl (λt ) |≤ 2m · | cl (λ) |,
where m �| U (λ) | is the number of until subformulas of λ. By Corollary 2.1, the number of states is bounded
by | Sϕ |≤ 2n + 1, where n � 2m · | cl (λ) |. In addition, for each reachable state ϕ, we compute the obligation
Olg(ϕ), which is exponential in the number of conjunctions in ϕ, but linear in other operators.

3.5. Proof of theorem 3.2

This section is devoted to the proof of Theorem 3.2. We organize the proof as follows. We first introduce the
notion of looping formulas and discuss their properties. We then continue with the soundness and completeness
proofs of the theorem.



An explicit transition system construction approach to LTL satisfiability checking 203

Assumption. Throughout the section, we have the following assumptions:

• λ denotes the fixed input formula, Tλ is the transition system for λ.

• all traces are over 	ω where 	 ⊆ 2Lλt , i.e., the set of consistent literals.
• all formulas appearing in this section are taken from the set of states Sλ, i.e., ϕ,ψ... ∈ Sλ. Thus, all formulas
in this section will be ranging over tagged atoms appearing in λt .

3.5.1. Looping formulas and their properties

We start with a simple theorem about the relation between satisfiability and the transitions:

Theorem 3.3 Let ξ ∈ 	ω be a trace and ϕ be a formula. Then, for all n ≥ 1, there exists ψ such that ξ |� ϕ ⇔
ϕ

ξn−→ ψ ∧ ξn |� ψ .

Proof Let ξ � ω0ω1 . . .. We prove the theorem by induction on n.

• For the base case we let n � 1. Then: ξ |� ϕ ⇔ ξ |� ∨
NF(ϕ) ⇔ ∃α ∧ Xψ ∈ NF(ϕ) · ξ |� (α ∧ Xψ)

⇔ ∃α ∧ Xψ ∈ NF(ϕ) · ξ1 |� ψ ∧ ω0 |� α ⇔ ∃ψ · ϕ
ξ 1−→ ψ ∧ ξ1 |� ψ .

• For the induction step,weassume the lemmaholds for alln � 1, 2, . . . , k andprove that it holds forn � k+1as

well. Applying the induction hypothesis on k , we have: ξ |� ϕ ⇔ ϕ
ξk−→ ψ ∧ξk |� ψ holds. Further, for ξk |� ψ

we apply the induction hypothesis with respect to the base case and obtain ξk |� ψ ⇔ ψ
ξ 1
k−→ ψ ′ ∧ ξk+1 |� ψ ′,

so we can conclude that ξ |� ϕ ⇔ ϕ
ξk+1−−→ ψ ′ ∧ ξk+1 |� ψ ′. The proof is done. �

Essentially, ξ |� ϕ is equivalent to the fact that we can reach a formula ψ along the prefix ξn such that the
suffix ξn satisfies ψ . Thus, if ξ |� ϕ holds, then ξ will be accepted by a run in STϕ .

Now we introduce the notion of looping formulas:

Definition 3.4 (Looping formula).We say ϕ is a looping formula iff there exists a trace ξ ∈ 	ω which can be written

as an infinite sequence ξ � η0η1η2 . . . such that ηi is a finite sequence and ϕ
ηi−→ ϕ for all i ≥ 0. We write ϕ

ξ−→ ϕ
in this case, and say ϕ is a looping formula with respect to ξ .

For convenience in the rest of the paper when we say ϕ is a looping formula, it really means ϕ is a looping
formula with respect to some infinite trace ξ . The following corollary is a direct consequence of Theorem 3.3 and
the fact that we have only finitely many formulas in Sϕ :

Corollary 3.1 If ξ |� ϕ, then there exists n ≥ 1 and ψ such that ϕ
ξn−→ ψ and ξn |� ψ and ψ

ξn−→ ψ .

Proof From Theorem 3.3 ξ |� ϕ implies there is an infinite expansion path σ � ϕ
ω0−→ ψ1

ω1−→ ψ2
ω2−→ . . . such

that ξi |� ψi for all i ≥ 1. Since we have only finitely states, there must exist a ψ reachable from ϕ such that it
appears infinitely often along this path. Obviously, this formula ψ is a looping formula as required. �

This corollary gives the hint that after a finite prefix we can focus on the satisfiability of looping formulas.
Now we give a lemma stating a nice property for the release operator:

Lemma 3.2 If ϕ � ϕ1Rϕ2 and ϕ
ξ−→ ϕ, then ξ |� ϕ.

Proof Since ϕ
ξ−→ ϕ, so we have ∃n · ϕ

ξn−→ ϕ ∧ ϕ
ξn−→ ϕ. Let ηi � ωiωi+1 . . . ωn (0 ≤ i ≤ n). Here all expansions

for the formula ϕ along the path must be from the right subformula ϕ2 of ϕ, i.e., α ∧ Xψ ∈ NF(ϕ2 ∧ Xϕ). Since

ϕ
ξn−→ ϕ, we have that ∀ 0 ≤ i ≤ n · ϕ2

ηi−→ tt, which implies ξj |� ϕ2 for all 0 ≤ j ≤ n. Inductively for ϕ
ξn−→ ϕ we

can get the same property. So ∀ j ≥ 0 we have ξ |� ϕ2, implying ξ |� ϕ. �
Lemma 3.2 indicates that if ϕ is a Release formula and ϕ is a looping formula with respect to ξ , then ξ |� ϕ.

There is another simple but useful property that looping formulas have, which we list as below:



204 J. Li et al.

Lemma 3.3 If ϕ is a looping formula, then there must be an Until or Release formula ψ in CF (ϕ).

Proof This lemma is directly proven according to LTL semantics, as for an arbitrary trace ξ it is impossible that

ϕ
ξ−→ ϕ holds without an Until or Release formula in CF (ϕ). �
Finally, we shall introduce an order on formulas to identify structural properties of looping formulas. We

propose the following order for formulas:

Definition 3.5 (Poset on formulas). For formulas ϕ,ψ , we write ϕ � ψ iff ϕ ∈ cl (ψ).

The order � is obviously a partial order. For a looping formula ϕ, the set CF (ϕ) possess at least one minimal
element (w.r.t. the order�). Below we prove that all minimal elements of the set expand either to tt or themselves.

Lemma 3.4 If ϕ
η−→ ϕ then for all minimal elements ψ ∈ CF (ϕ) we have ψ

η−→ tt or ψ
η−→ ψ .

Proof Letψ be a minimal element inCF (ϕ). Since ϕ
η−→ ϕ andψ ∈ CF (ϕ), there must existψ ′ such thatψ

η−→ ψ ′
and CF (ψ ′) ⊆ CF (ϕ) or ψ ′ � tt. If ψ ′ 	� tt, then according to Theorem 2.2 we know CF (ψ ′) ⊆ cl (ψ). However,
cl (ψ) ∩ CF (ϕ) � {ψ} because of the minimality of ψ . Thus ψ ′ � ψ . �

3.5.2. Soundness proof of theorem 3.2

We first introduce the relation |�f :

Definition 3.6 Let η � ω0ω1 . . . ωn (n ≥ 0). Then, we say the finite sequence η satisfies the formula ϕ, denoted
by η |�f ϕ, iff ϕ

η−→ ϕ′ for some ϕ′ and there exists O ∈ Olg(ϕ) such that O ⊆ η. Here O ⊆ η is an abbreviation
for O ⊆ ∪n

i�0ωi .

Please note that the relation is defined by checking syntactic inclusion. Thus, assuming the input formula is
aUa, which is a1Ua2 after tagging. According to the above definition, {a1} 	|�f a2. The reader shall bear this in
mind in the remaining of this section.

Below we present some simple properties of the relation |�f which is useful later:

Lemma 3.5 1. Assume η |�f ϕ, then η |�f ϕ ∨ ψ .
2. Assume η |�f ϕ and η |�f ψ , then η |�f ϕ ∧ ψ .

Proof Let η � ω0ω1 . . . ωn . We consider the first case: η |�f ϕ implies that there exists O ∈ Olg(ϕ) such that
O ⊆ η. Since O ∈ Olg(ϕ) ⊆ Olg(ϕ ∨ ψ), we have η |�f ϕ ∨ ψ . For the second case: η |�f ϕ implies that there
exists O1 ∈ Olg(ϕ) such that O1 ⊆ η. Similarly, η |�f ψ implies that there exists O2 ∈ Olg(ψ) such that O2 ⊆ η.
Since we have O1 ∪ O2 ∈ Olg(ϕ ∧ ψ) and O1 ∪ O2 ⊆ η, we have η |�f ϕ ∨ ψ . �

The following lemma corresponds to Lemma 3.2 for until formulas with respect to the finite satisfaction
relation:

Lemma 3.6 Let ϕ � ϕ1Uϕ2 and ϕ
η−→ ϕ. Then, η 	|�f ϕ.

Proof Let η � ω0ω1 . . . ωn and we rewrite ϕ
η−→ ϕ as ϕ

ω0−→ ψ1
ω2−→ . . .

ωn−→ ϕ. Note it is apparent that ϕ
ω0−→ (ϕ∧ϕ′

1)
with ϕ1

ω0−→ ϕ′
1. Thus, by induction one can show that along the path ϕ

ω0−→ ψ1
ω1−→ ψ2 . . . it holds ϕ ∈ CF (ψi ) for

all i . Since the transition for conjunctive formula ψi is obtained by combining transitions for each ψ ′ ∈ CF (ψi ),
the transition for the subformula ϕ ∈ CF (ψi ) must be from left subformula ϕ1, i.e., α ∧Xψ ∈ NF(ϕ1 ∧Xϕ). As a
result, for each i , the label ωi must be a superset of CF (αi ), and CF (αi ) contains the literals from ϕ1. Moreover,
the tagging function has been used to classify the atoms. According to Definition 3.3 the atoms in ϕ1 and ϕ2 are
never tagged the same—this is because the atoms in ϕ2 will tag ϕ while those in ϕ1 will not. So ϕ1 and ϕ2 still
don’t have common atoms, thus CF (αi ) contains no obligation literals from ϕ2;

According to Definition 3.2, the obligation literals of ϕ are all from those of ϕ2. Thus, from the definition of
|�f (Definition 3.6), we know η 	|�f ϕ. �

The following lemma says that if there exists a partitioning ξ � η1η2... that makes ϕ expanding to itself by
each ηi and ηi |�f ϕ holds, then ξ |� ϕ.



An explicit transition system construction approach to LTL satisfiability checking 205

Lemma 3.7 Given a looping formula ϕ and a trace ξ , let ξ � η1η2 . . .. If ∀ i ≥ 1 · ϕ ηi−→ ϕ ∧ ηi |�f ϕ, then ξ |� ϕ.

Proof We enumerate the set CF (ϕ) � {ϕ1, ϕ2, . . . , ϕn }, and we shall prove ξ |� ∧
CF (ϕ). Let S0 denote the min-

imal elements ofCF (ϕ) with respect to the partial order �. Moreover, we define Si+1 � Si ∪{ψ ′ ∈ CF (ϕ) | ∃ψ ∈
Si .ψ � ψ ′}. Obviously, there is a finite index k such that Sk � CF (ϕ). We proceed with induction over the index:

1. Basic step: Let ψ ∈ S0. By Lemma 3.4 if ϕ
ηi−→ ϕ, then ψ

ηi−→ tt or ψ
ηi−→ ψ . If ∃ηi · ψ

ηi−→ tt holds, ξ |� ψ

follows from Theorem 3.3. Otherwise we have ψ
ηi−→ ψ for all i ≥ 1. According to LTL semantics ψ must be

either until or release formula. Applying Lemma 3.6 we know that ψ cannot be an Until formula, and thus
be a Release formula from Lemma 3.3. Then Lemma 3.2 implies that ξ |� ψ , and therefore ξ |� ∧

S0.

2. For induction step we assume ξ |� ∧
Sk . Consider arbitrary ηi : let ψ ∈ Sk+1 \ Sk and assume ψ

ηi−→ ψ ′. Since
ϕ

ηi−→ ϕ, we have CF (ψ ′) ⊆ CF (ϕ). By the construction of the set Si , CF (ψ ′) does not contain any other
elements in Sk+1, thus we have CF (ψ ′) ⊆ {ψ} ∪ Sk . First we assume CF (ψ ′) ⊆ Sk . Then from the induction
hypothesis we know ηi+1ηi+2 . . . |� ψ ′ so ηiηi+1 . . . |� ψ (From Theorem 3.3), thus ξ |� ψ . Now consider the
case ψ ∈ CF (ψ ′):ψ

ηi−→ ψ implies that ψ must be a Release formula. (From Lemma 3.3 ψ is either an Until
or Release formula, and it cannot be an Until formula due to Lemma 3.6.) Then Lemma 3.2 implies again
that ξ |� ψ , and therefore ξ |� ∧

Sk+1. �

Now we are ready to prove the soundness part of the theorem:

Lemma 3.8 (Soundness) Let ϕ ∈ Sλ. Assume that there exists an SCC B of STϕ such that ψ ∈ B and L(B ) is a
superset of some obligation set O ∈ Olg(ψ). Then, SAT(ϕ).

Proof As B is a SCC, we have a path δ :� ψ(ψ1)
ω1−→ ψ2

ω2−→ . . .
ωk−1−−→ ψ such that η visits all states in B and all

transitions between states in B (η � ω1ω2 . . . ωk−1). Since all states in STϕ are reachable from ϕ, there must exist
a finite sequences η0 such that ϕ

η0−→ ψ . We construct ξ :� η0η
ω. By assumption there exists O ∈ Olg(ψ) such

that O ⊆ L(B ) � ∪k−1
i�1 ωi . So according to the definition of |�f we have η |�f ψ . Thus from Lemma 3.7 we have

ξ |� ϕ. So ϕ is satisfiable. �

3.5.3. Completeness proof of theorem 3.2

Lemma 3.9 ξ |� ϕ ⇒ ∃n · ξn |�f ϕ.

Proof We prove it by structural induction over the formula ϕ. For the base case assume ϕ is tt or a literal, ξ 1 |�f ϕ
by definition. Moreover, ϕ can not be ff. Now we consider the induction step:

• If ϕ � Xψ , then ξ |� ϕ ⇒ ξ1 |� ψ . By induction hypothesis we know ∃n · ξ1
n |�f ψ holds, so ξn+1 |�f ϕ

holds.
• If ϕ � ϕ1 ∧ ϕ2, then ξ |� ϕ1 ∧ ξ |� ϕ2. By induction hypothesis we have ∃n1 · ξn1 |�f ϕ1 and ∃n2 · ξn2 |�f ϕ2
hold. Observe that ξn |�f ϕ implies ξm |�f ϕ for all m ≥ n. Now from Lemma 3.5 we have that ξn |�f ϕ
with n :� max(n1,n2).

• If ϕ � ϕ1 ∨ ϕ2, then ξ |� ϕ1 ∨ ξ |� ϕ2. By induction hypothesis we have ∃n1 · ξn1 |�f ϕ1 or ∃n2 · ξn2 |�f ϕ2
holds. Without loss of generality, assume ∃n1 · ξn1 |�f ϕ1. Lemma 3.5 implies then ξn1 |�f ϕ1 ∨ ϕ2.

• If ϕ � ϕ1Uϕ2, ξ |� ϕ1Uϕ2 implies that there exists i ≥ 0 such that ξi |� ϕ2. By induction hypothesis we have
∃n · ξi

n |�f ϕ2 hold, thus there exists an obligation O ∈ Olg(ϕ2) such that O ⊆ ξi
n . This implies O ⊆ ξ i+n ,

thus ξ i+n |�f ϕ holds.
• If ϕ � ϕ1Rϕ2, we observe first that ξ |� ϕ2 must hold. By induction hypothesis we know ∃n · ξn |�f ϕ2.
According to Definition 3.6 we have that ξn |�f ϕ holds as well. �

Lemma 3.10 Let ξ be an infinite trace, ϕ be a looping formula, and assume ϕ
ξ−→ ϕ and ξ |� ϕ hold. Then there

exists a partitioning ξ � η1η2 . . . and ∀ i ≥ 1 · ϕ
ηi−→ ϕ ∧ ηi |�f ϕ holds.

Proof Assume ϕ
ξ−→ ϕ∧ξ |� ϕ. We first prove that there exist n such that ϕ

ξn−→ ϕ∧ξn |�f ϕ∧ (ϕ
ξn−→ ϕ∧ξn |� ϕ).

From Lemma 3.9 ξ |� ϕ implies that there exists k such that ξk |�f ϕ. Since ϕ is a looping formula with respect



206 J. Li et al.

to ξ , we can find the n ≥ k such that ϕ
ξn−→ ϕ and ϕ

ξn−→ ϕ hold. For n ≥ k , ξn |�f ϕ holds as well. Now we apply

Theorem 3.3: ξ |� ϕ implies that ϕ
ξn−→ ϕ and ξn |� ϕ.

Since ϕ
ξn−→ ϕ ∧ ξn |� ϕ, applying the arguments above inductively yields the lemma. �

The above lemma states that if ϕ
ξ−→ ϕ as well as ξ |� ϕ, we can find a partitioning η1η2 . . . that makes ϕ

expend to itself by each ηi and ηi |�f ϕ holds. Combining Lemma 3.9, Lemma 3.10 and Corollary 3.1, we have
the completeness of our central theorem:

Lemma 3.11 (Completeness) Let ϕ ∈ Sλ. Then, SAT(ϕ) implies that there exists a SCCB of STϕ such thatψ ∈ B
and L(B ) is a superset of some obligation set O ∈ Olg(ψ).

Proof Since SAT(ϕ), let ξ be such that ξ |� ϕ. Then by Corollary 3.1 there exists n ≥ 0 and ψ ∈ Sϕ such that

ϕ
ξn−→ ψ , ψ

ξn−→ ψ and ξn |� ψ . Moreover, by Lemma 3.10, there exists a partition ξn � η1η2 . . . such that for
every finite sequence ηi we have ψ

ηi−→ ψ as well as ηi |�f ψ . As the state ψ is visited infinitely often, there must
be a SCC B such that ψ ∈ B . According to the definition of |�f we know that there exists O ∈ Olg(ψ) such that

O ⊆ η1. Obviously, ψ
η1−→ ψ is contained in some SCC B , thus η ⊆ L(B ), implying O ⊆ L(B ). �

Wehaveproposedournewsatisfiability checkingmethodology forLTLformulas.Wealsoprove the correctness
above for the approach. And in the next section we talk about the evaluations among our techniques as well as
other existing solutions.

4. Experiments

In this sectionwedetail our experimentalmethodologyand results.To test the efficiencyof theproposedalgorithm,
we have implemented it in a tool calledAalta 1. We call Theorem 3.1 as the obligation acceleration technique (OA,
for short). Similarly, we refer to the technique that underlies Theorem 3.2 as the on-the-fly technique (OF, for
short). In the tool we have the following two configurations: (i) OF: On-the-fly checking without OA, (ii) OFOA:
On-the-fly checking with obligation acceleration. By defaultAalta is implemented with the OFOA configuration.

We run all our experiments on the SUG@R cluster in Rice University2. SUG@R is an Intel Xeon compute
cluster. It contains 134 SunFire x4150 nodes from Sun Microsystems. Each node has two quad-core Intel Xeon
processors runningat 2.83GHz, yielding a system-wide total of 1064processor cores.TheOS isRedHatEnterprise
5 Linux, 2.6.18 kernel. The time cost is measured using theUnix time command. All timemeasurements are “end-
to-end”: That means we measure the time starting from formula input to the satisfiability-checking result (SAT
or UNSAT). If timeout occurs before the result is given, then we count the timeout as the checking time in the
current test.

We set up our experiment in this paper by following related previouswork. In [LZP+13] we follow the strategies
in [RV11], which aims to focus the comparison among automata-based LTL satisfiability solvers. Some details
are missing in [LZP+13] and we will discuss them explicitly in this paper. We introduce them in the following.

4.1. Tool implementation

The architecture of tool Aalta is represented in Fig. 4, Aalta provides two interfaces, input and output. And the
core modules consist of Parser, NNF Converter and LTL Checker.

Input: The input of Aalta is a string. Also Aalta recognizes propositional operators such as ∧ and temporal
operators, for instance, X , R. Special operators like F and G can be recognized by Aalta, too. Gϕ � ffRϕ,
Fϕ � ttUϕ. Table 1 shows the mapping relationship between formula operators and representations in Aalta.

Output: Aalta shows the satisfiability checking result of input formula. sat means the input formula is satis-
fiable, unsat is not. Users can choose configuration parameters such as “-” to get an trace satisfying the input
formula which is sat. To present infinite traces, “(s)” is used by Aalta to denote the infinite occurrence of string
s. For instance, an output like “a(xy)” is an infinite trace “a(xy)ω”.

1 www.lab205.org/aalta
2 http://www.rcsg.rice.edu/sugar/

www.lab205.org/aalta
http://www.rcsg.rice.edu/sugar/


An explicit transition system construction approach to LTL satisfiability checking 207

Core Modules

Parser NNF
Converter LTL Checker OutputInput Sat/Unsat

Fig. 4. The architecture of Aalta

Table 1. The operators representations in Aalta
operators symbols

¬ !,∼
∧ &, &&
∨ |, ||
X X
U U
R R,V
G G,[]
F F,〈〉
→ →
↔ ↔
tt true,TRUE
ff false,FALSE

Parser: This part is to recognize the input string of Aalta, mainly cope with operators shown in Table 1 to
normalize the input formula. Formula simplification and Tagging are done in this process after which we can get
an abstract semantic tree.

NNF Converter:Our algorithm requires the formula under check to be in NNF, so we implemented theNNF
Converter to automatically generate NNF form of each input formula according toDefinition 2.3. For eachNNF
formula, we will compute the obligation set.

LTL Checker: In this part, we need to check the consistency of obligation set in every new generated state.
If a consistent obligation is found, then return sat according to Algorithm1, Line 1–2. If there are no consistent
obligation and the state has been visited before, we will try to find whether an accepting SCC containing ϕ has
occurred. Return unsat if there are no accepting SCC, else return sat. For each state generated byNNFConverter,
LTL Checker will be invoked which means our checking process will run on-the-fly.

4.2. Comparing with automata-based solvers

In this section we follow the strategy introduced in [RV11].



208 J. Li et al.

4.2.1. Testing tools

We compare the performance of Aalta with two other LTL satisfiability solvers: PANDA+CadenceSMV [RV11]
and SPOT [DLP04]. SPOT is considered as the best explicit LTL-to-Büchi translator [RV07, RV10]. Its most
recent version (1.0.2 at the time ofwriting the present paper) has an integrated emptiness checking implementation
(with “-e” flag) and it is considerably improved since the benchmarking in [RV07, RV10]. That benchmarking
showed the superiority of CadenceSMV for LTL satisfiability checking, and this has been further improved in
PANDA+CadenceSMV [RV11]. Thus, we benchmarked all three tools. Note that PANDA consists of 30 different
symbolic encodings, we run all these encodings in parallel and choose the best result among them.

4.2.2. Benchmarks

We use here the benchmarks from [RV07, RV10, RV11]. These include random, pattern and counter formulas.
We tested over 60,000 random formulas and all eight kinds of pattern (lengths varying from 1 to 1000) and four
kinds of counter formulas (lengths varying from 1 to 20). These benchmarks are suitable for testing satisfiability
of large formulas. As described in [RV07, RV10], random formulas are created by randomly choosing N, L and
P, where N represents the number of variables in the formula, L is the length of the generated formula and P is
the probability of occurrence of the Until operator. The pattern formulas are those with special format and may
be used quite often in practice. The counter formulas are a kind of patterns whose satisfiability checking requires
generation of the whole systems (automata). For more details on these formulas we refer to [RV07, RV10]. There
are already off-the-shelf perl scripts that can generate these formulas3. Our benchmarks are obtained directly
from those executable scripts.

Typical temporal assertions are, however, quite small in practice [DAC98]. What makes the LTL satisfiability
problem hard is the fact that we need to check large conjunctions of small temporal formulas, as we need to check
that the conjunction of all input assertions is also satisfiable. We introduce here a novel class of challenging
LTL benchmarks, which are random conjunctions of specification patterns from [DAC98]. Formally, a random
conjunction formulaRC (n) has the form:RC (n) � ∧

1≤i≤n Pi (v1, v2, . . . , vk ), wheren is the number of conjuncts
elements andPi (1 ≤ i ≤ m) is a randomly chosen property pattern formula used frequently in practice [DAC98].
The propositions {v1, v2, . . . , vk } used in these formulas are also chosen randomly. More precisely, we generate
the class of random conjunction formulas in the following way:

1. We extract all pattern formulas4.
2. For a formula in RC (n), we conjoin n pattern formulas selected randomly. In each pattern formula, we

instantiate the variables as random literals (positive or negative) over a set of six atomic propositions.
3. In our experiments we generated 500 random formulas for each n.

In this part of the experiment, each test is run on a single core of SUG@AR with a timeout of 10 minutes for
each formula. When the timeout occurs in a test, we count it the maximum cost of 600 seconds (10 minutes). To
test Aalta’s correctness, we assume that the results from PANDA+CadenceSMV and SPOT are correct and we
compare the results with Aalta’s. Aalta successfully passes all the tests.

4.2.3. Experimental results

The experimental results are reported in this section. Generally speaking, our results demonstrate that Aalta
outperforms both SPOT and PANDA+CadenceSMV. The experimental results show that, Aalta performs best
for random and random conjunction formulas, and also better for 6 out of 8 pattern formulas. Note that when
we say Aalta performs best in this section, we actually means Aalta performs best among the three testing tools.
However, the performance of Aalta on counter formulas is slightly worse than the other two solvers. In the
following we explicit these aspects respectively.

Aalta performs best for random formulas. Wefirst compare the three tools on randombenchmarks.Weuse here th-
ree atomic propositions and formula length of up to 200. In total, we tested 20,000 random formulas. Figure 5 sho-
ws performance results for the three tools, where for each length we report average running time on 500 formulas.

3 http://ti.arc.nasa.gov/m/profile/kyrozier/benchmarking_scripts/benchmarking_scripts.html
4 http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

http://ti.arc.nasa.gov/m/profile/kyrozier/benchmarking_scripts/benchmarking_scripts.html
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml


An explicit transition system construction approach to LTL satisfiability checking 209

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

A
ve

ra
ge

 C
he

ck
in

g 
T

im
e 

(s
)

Formula Length

Average Best PANDA+CadenceSmv vs SPOT 
 vs Aalta checking time

Aalta
PANDA+CadenceSmv

SPOT

Fig. 5. Experimental results for random formulas with 3 variables

 0

 5

 10

 15

 20

 0  50  100  150  200  250

C
he

ck
in

g 
tim

e 
(s

)

Variable numbers

Best PANDA+CadenceSmv vs SPOT vs Aalta 
 checking for R pattern formulas

Aalta
PANDA + CadenceSmv

SPOT

Fig. 6. Experimental results for pattern R(n) � ∧
i�1

n (GFpi ∨ FGpi+1)

We can see thatAalta outperforms the other tools on random formulas. In fact,Aalta significantly outperforms the
other tools; for 60% of the formulas,Aalta returns in a fewmilliseconds, while SPOT and PANDA+CadenceSMV
takes tens of seconds. In total, Aalta completes checking all 20,000 formulas in one hour, while neither SPOT
nor PANDA+CadenceSMV are able to complete in 24 hours. The superiority of Aalta stems from the fact that
95% of the test formulas turn out to be satisfiable; furthermore, 80% of them are checked by using the obligation
acceleration technique. This indicates the power of obligation accelerationon checking satisfiable formulas. Indeed,
on unsatisfiable formulas PANDA+CadenceSMV is faster than Aalta, performing nearly twice as faster than
Aalta. Overall, however, Aalta’s heuristics for quick satisfiability testing do pay off.



210 J. Li et al.

 0

 1

 2

 3

 4

 5

 0  100  200  300  400  500

C
he

ck
in

g 
tim

e 
(s

ec
on

ds
)

Variable numbers

Best PANDA+CadenceSmv vs SPOT vs Aalta
 checking for S pattern formulas

Aalta
PANDA + CadenceSmv

SPOT

Fig. 7. Experimental results for pattern S (n) � ∨
1≤i≤n Gpi

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000

C
he

ck
in

g 
tim

e 
(s

ec
on

ds
)

Variable numbers

Best PANDA+CadenceSmv vs SPOT vs 
 Aalta checking for C1 pattern formulas

Aalta
PANDA + CadenceSmv

SPOT

Fig. 8. Experimental results for pattern C1(n) � ∨
1≤i≤n GFpi

Aalta performs best for most of the pattern formulas. Our experiments show that Aalta performs best
for all pattern formulas except the S-pattern formula, where SPOT performs best among three tools.
For example, Fig. 6 displays the comparing results for the R-pattern formulas, where SPOT scales
exponentially with formula length, while PANDA+CadenceSMV is quicker, and Aalta performs the best.



An explicit transition system construction approach to LTL satisfiability checking 211

 0

 200

 400

 600

 800

 1000

 0  5  10  15  20

C
he

ck
in

g 
tim

e 
(s

ec
on

ds
)

Bit numbers

Best PANDA+CadenceSmv vs SPOT vs 
 Aalta checking for Counter formulas

Aalta
PANDA + CadenceSmv

SPOT

Fig. 9. Experimental results for counter formulas

 0

 10

 20

 30

 40

 50

 0  2  4  6  8  10  12  14

A
ve

ra
ge

 C
he

ck
in

g 
tim

e 
(s

ec
on

ds
)

Number of conjunctive elements

Best PANDA+CadenceSmv vs SPOT vs Aalta 
 checking for random conjunction formulas

Aalta
PANDA + CadenceSmv

SPOT

Fig. 10. Experimental results for random conjunctive formulas

Here it is clear that SPOT pays the price for not performing the automaton non-emptiness test on-the-fly, as the
automata scale exponentially. In fact, even Aalta scales exponentially for R-pattern formulas without the obliga-
tion acceleration technique. There are other patterns such asC2 (C2(n) � ∧

1≤i≤n GFpi ), E (E (n) � ∧
1≤i≤n Fpi ),

Q (Q(n) � ∧
1≤i≤n (Fpi∨Gpi+1)),U (U (n) � (. . . (p1Up2) . . .)Upn ), andU2 (U 2(n) � p1U (p2U (. . . (pn−1Upn ))),

for which the results from Aalta perform best among tested tools, and especially exponentially faster than those
from SPOT.



212 J. Li et al.

 0

 5

 10

 15

 20

 0  50  100  150  200

A
ve

ra
ge

 c
he

ck
in

g 
tim

e 
(s

)

formula length

Average checking time for random formulas
 from Aalta with OFOA and OF

Aalta with OFOA
Aalta with OF

Fig. 11. Experimental results for 3-variable random formulas from Aalta with OFOA and OF

 0

 5

 10

 15

 20

 0  2  4  6  8  10  12  14

A
ve

ra
ge

 c
he

ck
in

g 
tim

e 
(s

)

formula length

Average checking time for random conjuncition
 formulas from Aalta with OFOA and OF

Aalta with OFOA
Aalta with OF

Fig. 12. Experimental results for random conjunction formulas from Aalta with OFOA and OF

There are two kinds of pattern formulas for which SPOT is able to check in linear time with the size. That are,
S and C1 patterns (shown in Figs. 7, 8). For S-pattern formulas, all three tools scale polynomially, since automata
size scales linearly. Note here, SPOT performs better than Aalta on S pattern, which is because that automaton
construction in SPOT is faster due to its highly optimized development during the years. The same case occurs
when considering the counter formulas, in which SPOT performs best, and follows PANDA+CadenceSMV and
then our tool Aalta. The results are shown in Fig. 9. Actually, a counter formula is a special kind of pattern
which constructs the Büchi automaton with the exponential size to the bit number given in the formula. This
automaton has only one accepting condition, which has to be explored until the whole automaton is generated.



An explicit transition system construction approach to LTL satisfiability checking 213

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200

A
ve

ra
ge

 C
he

ck
in

g 
T

im
e 

(s
ec

on
ds

)

Formula Lengths

Average Best PANDA+CadenceSmv vs SPOT 
 vs Aalta checking for

 satisfiable random formulas

Aalta
PANDA+CadenceSMV

SPOT

Fig. 13. Experimental results for satisfiable random formulas with 3 variables

As a result, for all three tools, no optimizations can be used to check it satisfiable instead of spending the worst
time to generate the automaton. It is not surprising that SPOT performs best on this kind of formulas, since
it is already equipped with best automata construction. But as mentioned together, even SPOT must spend
exponential cost to check the results.

Aalta performs best for random conjunction formulas. Checking satisfiability of random conjunction formulas
is quite challenging, but Aalta still performs best. The results are shown in Fig. 10. The number of conjuncts
extends only to 15 (with average formula length of 100) and all tools time out for larger formulas. The advantage
of Aalta here is less marked; it performs about twice as fast as SPOT and PANDA+CadenceSMV. Checking
satisfiability for random-conjunction formulas emerges as a challenging problem, requiring further research. It
would be interesting to combine Aalta with the abstraction technique of [CRST07].

The obligation acceleration enhances on-the-fly checking. One of the effective heuristics of Aalta is the OA tech-
nique: a consistent obligation implies satisfiability directly. Now we compare here the results from Aalta imple-
mented with the OFOA and pure OF strategies in checking random and random conjunction formulas. Figures
11 and 12 indicate thatOA indeed plays a key role. For random formulas theOFOA strategy performsmuch faster
than the pure OF strategy. Moreover, the OFOA strategy can be even exponentially better for special cases, such
as the R pattern formulas mentioned above. Although the advantage declines for random conjunction formulas,
the OFOA strategy is still twice as fast as the OF strategy.

Aalta contributes mainly on satisfiable formulas. SinceAalta follows the on-the-fly checking framework, it should
contribute more apparently for satisfiable rather than unsatisfiable formulas. The results from Figs. 13 and 14
confirm the intuition. Figure 13 shows the comparing results for satisfiable random formulas, while Fig. 14 shows
that for unsatisfiable ones. It takes Aalta almost less than 1 second in average to check the satisfiable formulas,
which can be seen from Fig. 13. For unsatisfiable formulas, Fig. 14 shows the performances between three tools
are not obvious: PANDA+CadenceSMV performs better thanAalta. Comparing to the results in Fig. 5, one can
conclude easily that Aalta contributes mainly for the satisfiable formulas.



214 J. Li et al.

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

A
ve

ra
ge

 C
he

ck
in

g 
T

im
e 

(s
ec

on
ds

)

Formula Lengths

Average Best PANDA+CadenceSmv vs SPOT 
 vs Aalta checking for

 unsatisfiable random formulas

Aalta
PANDA+CadenceSMV

SPOT

Fig. 14. Experimental results for unsatisfiable random formulas with 3 variables

4.3. Discussion

In this section we have set up the experiment which follows the strategies in [RV11] and focus on merely the
comparison among automata-based LTL satisfiability solvers. From this we find our approach has a fairly big
advantage.

Note we measure the results by the time cost of checking in the paper. That means, we count each test the
time from the original input to the checking result being obtained. In particular, if timeout occurs then the time
for this test is considered to be the timeout (10 minutes). We display the results by taking a group of formulas as
a unit, and thus we show the total (or average) time cost of the given group of formulas. In this way every test
has the same maximum cost and thus the total cost succeeds to indicate the number of solved cases for a group
of formulas. In other words, the less total time cost is paid in our statistics, the more cases the corresponding
checker can solve within the same maximum timeout. The selection of timeouts depends on the difficulties of
benchmarks: The one used in the experiment is simple for all three testing tools so we can set the timeout to be
10 minutes without increasing our whole experimental time (about 24 hours).

5. Related work

The classical approach to LTL satisfiability checking is by reduction to model checking. This can be imple-
mented using either explicit-state techniques or symbolic techniques. Rozier and Vardi [RV07, RV10] studied
this approach and benchmarked several tools. They concluded that the combination of SPIN [Hol97] and SPOT
[DLP04] yields the best performance for the explicit-state approach, but symbolic tools such as CadenceSMV
[McM99] orNuSMV [CCG+02, CRST07] yields better performance. In follow-upwork [RV11], Rozier andVardi
studied several symbolic encodings of automata for LTL formulas and described a tool, PANDA, built on top
of CadenceSMV, which implements a portfolio approach, running many symbolic encodings in parallel and
selecting the best performing one.

It should be mentioned that, the later version of NuSMV (since 2002) integrates bounded model checking
[BCCZ99, CBRZ01, CPRS02] as well. The bounded model checking framework encodes both the system and
properties symbolically, and thenuses SATsolvers [ES03] to compute the results. Thanks to the rapid development
of SAT techniques for years, the performance of bounded model checking becomes very efficient. Although this
method is not complete, which means that it cannot check any unsatisfiable formulas, it provides a promising
direction to achieve a best solution for LTL satisfiability checking. Several related works such as IMC[McM03]



An explicit transition system construction approach to LTL satisfiability checking 215

and IC3 [Bra11] are received well concern recently, and we leave the comparison between our approach and them
in the future work.

In earlier works, the decision problem of LTL satisfiability checking is known to be PSPACE-complete [SC82].
One kind of checking algorithm is considered as a 2-phase procedure: First use a tableau procedure to create
a graph, and then apply another one to check whether all eventuality (Until) formulas are fulfilled. The sec-
ond step often leads to an exploration on all the strongly connected components (SCC) [Tar72] of the graph.
The representatives on this method include [Wol85, KMMP93]. Theoretically, this kind of solution works in
EXPTIME.

However, a subsequent work using the tableau structure succeeds with only 1 phase [Sch98]. That means,
instead of a graph construction, the tableau procedure generates a tree structure, and then check whether all
eventuality (Until) formulas are fulfilled along each branch of the tree. In that way, only one branch is necessary to
keep inmemoryduring checkingprocess,which they claim tobemore considerablewhen executing in parallel. The
solver pltl is the representative of this approach. The complexity of this approach is considered to be 2EXPTIME.
But dramatically, Goranko, Kyrilov, and Shkatov [VGS10] showed that, in practice, the one-phase procedure is
more efficient than the two-phase one. They compared these twomethods by the benchmarks from [RV07, RV10],
testing all the random, pattern and counter formulas, and found that the one-phase procedure can even perform
exponentially better than the two-phase one. The conclusion becomes one evidence that, theoretically worst-case
complexity results do not always reflect truly in practice.

The satisfiability checking of LTL formulas is also able to be achieved by temporal resolution [FDP01, Sch10].
The main idea is that, the input formula must first be translated to its Separated Normal Form (SNF) [Fis91],
and then the clauses in the SNF can be deductive according to some basic rules (or say, axioms for LTL global
formulas as each clause in SNF is a global one). The inductive system can be treated as a direct graph, and each
time at least one of the clauses in SNF intends to be erased. If all the clauses are erased, then the algorithm
recognizes that the input formula is unsatisfiable, otherwise the formula is satisfiable. One can see that this
approach performs better for checking unsatisfiable formulas, while the satisfiable formula must be determined
after all the exploration. Another bottleneck of this approach is that, translating the input formula to its SNF
may lead to an exponential up cost, which is inefficient for on-the-fly checking. One representative solver of this
solution is TRP++.

There is also another LTL satisfiability checking strategy based on antichains [DDMR08]. The work fol-
lows the model-checking-based framework, but to avoid the potentially exponential up cost on generating
NBW (Non-deterministic Büchi Automata), they construct the ABW (Alternating Büchi Automata) instead.
They encode the ABW symbolically, and use the combination of BDDs [Bry86, Bry92] and antichains to
present the structure efficiently. Then an emptiness checking is taken on the generated ABW. A representa-
tive solver is Alaska. The advantages of this method are: first they use the antichains rather than enumer-
ating the whole alphabet to construct the BDDs; And second the checking procedure is processed on the
ABW instead of NBW, which potentially performs exponentially faster than the classical model-checking-based
approach.

Schuppan and Darmawan [SD11] performed a comprehensive experimental evaluation of LTL satisfiabil-
ity solvers. They considered a wide range of solvers implementing three major classes of algorithms, based
on model checking, tableau, and temporal resolution. They concluded that no solver dominates or solves all
instances, and recommend a portfolio approach, similar to that of [RV11]. Our tool, Aalta, is closest in spirit
to the model-checking approach, but it combines automaton generation and non-emptiness checking in an
on-the-fly approach. Briefly, we first construct a transition system for the input formula based on the obser-
vation that every formula has an equivalent normal form [LPZ+13]. Then a central theorem is proposed to
guarantee the checking on the transition system with an on-the-fly manner. Beside that, some accelerations
are also introduced from the obligation set, which can be naturally extracted from an LTL formula. Note
that the concept of normal form is also involved in [DTZ08]. In this paper we not only demonstrate its per-
formance advantage over automata-based tools, but also set up a comprehensive comparison in the style of
[SD11].

6. Conclusions

In this paper, we proposed a novel on-the-fly satisfiability checking approach for LTL formulas. Our approach
exploits the notion of obligation set, which provides efficient ways for identifying many satisfiable formulas. We



216 J. Li et al.

have implemented a tool, Aalta, and run experiments using existing and new benchmarks. In most of the cases,
Aalta significantly outperforms existing automata-based LTL satisfiability solvers.

Acknowledgements

Jianwen Li is partially supported by NSFC Project No. 61572197 and No. 61632005. Geguang Pu is partially
supported by MOST NKTSP Project 2015BAG19B02 and STCSM Project No. 16DZ1100600. Lijun Zhang
is supported by the National Natural Science Foundation of China (Grants 61532019, 61472473). Jifeng He is
partially supported by project Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of
Things (ZF1213). Moshe Vardi is supported in part by NSFGrants CCF-1319459 and IIS-1527668, and by NSF
Expeditions in Computing project “ExCAPE: Expeditions in Computer Augmented Program Engineering”.
Funding Funding was provided by National Natural Science Foundation of China (Grant Nos. 91118007,
61021004, 61361136002), National Science Foundation (Grant No. CNS 1049862).

References

[BCCZ99] BiereA,CimattiA,ClarkeEM,ZhuY (1999) Symbolicmodel checkingwithoutBDDs. In: Proceedings of the 5th international
conference on tools and algorithms for the construction and analysis of systems, volume 1579 of Lecture notes in computer
science. Springer

[BCM+92] Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ (1992) Symbolic model checking: 1020 states and beyond. Inf
Comput 98(2):142–170

[Bra11] Bradley A (2011) Sat-based model checking without unrolling. In: Jhala R, Schmidt D (eds) Verification, model checking,
and abstract interpretation, volume 6538 of Lecture notes in computer science, pp 70–87. Springer, Berlin

[Bry86] Bryant RE (1986) Graph-based algorithms for Boolean-function manipulation. IEEE Trans Comput C-35(8):677–691
[Bry92] Bryant RE (1992) Symbolic boolean manipulation with ordered binary-decision diagrams. ACMComput Surv 24(3):293–318
[CBRZ01] Clarke EM, Bierea A, Raimi R, Zhu Y (2001) Bounded model checking using satisfiability solving. Formal Methods Syst Des

19(1):7–34
[CCG+02] Cimatti A, Clarke EM, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Sebastiani R, Tacchella A (2002) Nusmv 2: an

opensource tool for symbolic model checking. In: Computer aided verification, Lecture notes in computer science 2404, pp
359–364. Springer

[CCGR00] Cimatti A, Clarke EM, Giunchiglia F, Roveri M (2000) NuSMV: a new symbolic model checker. Int J Softw Tools Technol
Transf 2(4):410–425.

[CGP99] Clarke EM, Grumberg O, Peled D (1999) Model checking. MIT Press, Cambridge
[CPRS02] Cimatti A, PistoreM, RoveriM, Sebastiani R (2002) Improving the encoding of ltl model checking into sat. In: Revised papers

from the third international workshop on verification, model checking, and abstract interpretation, VMCAI ’02, pp 196–207.
Springer, London

[CRST07] Cimatti A, RoveriM, Schuppan V, Tonetta S (2007) Boolean abstraction for temporal logic satisfiability. In: Proceedings of the
15th international conference on computer aided verification, volume 4590 of Lecture notes in computer science, pp 532–546.
Springer

[CVWY92] Courcoubetis C, Vardi MY, Wolper P, Yannakakis M (1992) Memory efficient algorithms for the verification of temporal
properties. Formal Methods Syst Des 1:275–288

[DAC98] Dwyer MB, Avrunin GS, Corbett JC (1998) Property specification patterns for finite-state verification. In: Proceedings of the
2nd workshop on formal methods in software practice, pp 7–15. ACM

[DDMR08] DeWulfM,DoyenL,MaquetN,Raskin J-F (2008)Antichains: alternative algorithms for ltl satisfiability andmodel-checking.
In: Tools and algorithms for the construction and analysis of systems, volume 4963 of Lecture notes in computer science, pp
63–77. Springer

[DGV99] Daniele N, Guinchiglia F, Vardi MY (1999) Improved automata generation for linear temporal logic. In: Proceedings of the
11th intenational conference on computer aided verification, volume 1633 of Lecture notes in computer science, pp 249–260.
Springer

[DLP04] Duret-Lutz A, Poitrenaud D (2004) SPOT: An extensible model checking library using transition-based generalized büchi
automata. In: Proceedings of the 12th International workshop onmodeling, analysis, and simulation of computer and telecom-
munication systems, pp 76–83. IEEE Computer Society

[DTZ08] Duan Z, Tian C, Zhang L (2008) A decision procedure for propositional projection temporal logic with infinite models. Acta
Inf 45(1):43–78

[ES03] Eén N, Sörensson N (2003) An extensible sat-solver. In: SAT, pp 502–518
[FDP01] Fisher M, Dixon C, Peim M (2001) Clausal temporal resolution. ACM Trans Comput Logic 2(1):12–56
[Fis91] Fisher M (1991) A resolution method for temporal logic. In: In proceedings of the twelfth international joint conference on

artificial intelligence, pp 99–104. IJCAI, Morgan Kaufman
[FKL04] Foster HD, Krolnik A, Lacey DJ (2004) Assertion-based design. Springer, Berlin
[Hol97] Holzmann GJ (1997) The model checker SPIN. IEEE Trans Softw Eng 23(5):279–295



An explicit transition system construction approach to LTL satisfiability checking 217

[KMMP93] Kesten Y, Manna Z, McGuire H, Pnueli A (1993) A decision algorithm for full propositional temporal logic. In: Courcoubeti
C (ed) Proceedings of the 5th conference on computer aided verification, volume 697 of Lecture notes in computer science,
pp 97–109. Springer

[LPZ+13] Li J, Pu G, Zhang L, Wang Z, He J, Larsen KG (2013) On the relationship between ltl normal forms and büchi automata. In:
Liu Z, JimW, Zhu H (eds) Theories of programming and formal methods, volume 8051 of Lecture notes in computer science,
pp 256–270. Springer

[LZP+13] Li J, ZhangL, PuG,VardiM,He J (2013) Ltl satisfibility checking revisited. In: The 20th international symposiumon temporal
representation and reasoning, pp 91–98

[McM99] McMillan K (1999) The SMV language. Technical report, Cadence Berkeley Lab
[McM03] McMillanK (2003) Interpolation and sat-basedmodel checking. In: Jr. Hunt,WarrenA, Somenzi Fabio (eds) Computer aided

verification, volume 2725 of Lecture notes in computer science, pp 1–13. Springer, Berlin
[PSC+06] Pill I, Semprini S, CavadaR, RoveriM, BloemR, Cimatti A (2006) Formal analysis of hardware requirements. In: Proceedings

of the 43rd design automation conference, pp 821–826. ACM
[RV07] Rozier KY, Vardi MY (2007) LTL satisfiability checking. In: Proceedings of the 14th international SPIN workshop, volume

4595 of Lecture notes in computer science, pp 149–167. Springer
[RV10] Rozier KY, Vardi MY (2010) LTL satisfiability checking. Int J Softw Tools Technol Transf 12(2):1230–137
[RV11] Rozier KY, Vardi MY (2011) A multi-encoding approach for LTL symbolic satisfiability checking. In: Proceedings of the 17th

International symposium on formal methods, volume 6664 of Lecture notes in computer science, pp 417–431. Springer
[SC82] Sistla AP, Clarke EM (1982) The complexity of propositional linear temporal logics. In: Proceedings of the 14th annual ACM

symposium on theory of computing, pp 159–168
[SC85] Sistla AP, Clarke EM (1985) The complexity of propositional linear temporal logic. J ACM 32:733–749
[Sch98] Schwendimann S (1998)A newone-pass tableau calculus for pltl. In: Proceedings of the international conference on automated

reasoning with analytic tableaux and related methods, pp 277–292. Springer
[Sch10] Schuppan V (2010) Towards a notion of unsatisfiable cores for ltl. In: Fundamentals of software engineering, pp 129–145
[SD11] Schuppan V, Darmawan L (2011) Evaluating ltl satisfiability solvers. In: Proceedings of the 9th international conference on

Automated technology for verification and analysis, AVTA’11, pp 397–413. Springer
[Tar72] Tarjan RE (1972) Depth first search and linear graph algorithms. SIAM J Comput 1(2):146–160
[Var07] Vardi MY (2007) Automata-theoretic model checking revisited. In: Proceedings of the 8th international conference on verifi-

cation, model checking, and abstract interpretation, volume 4349 of Lecture notes in computer science, pp 137–150. Springer
[VGS10] KyrilovA,GorankoV, ShkatovD (2010) Tableau tool for testing satisfiability in ltl: Implementation and experimental analysis.

Electr Notes Theory Comput Sci 262:113–125
[VW86] Vardi MY, Wolper P (1986) An automata-theoretic approach to automatic program verification. In: Proceedings of the 1st

IEEE symposium on logic in computer science, pp 332–344
[Wol85] Wolper P (1985) The tableau method for temporal logic: an overview. Logique Anal 110–111:119–136

Received 14 June 2016
Accepted in revised form 27 September 2017 by Jim Woodcock
Published online 9 November 2017


	An explicit transition system construction approach to LTL satisfiability checking
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Linear temporal logic
	2.2 Normal form expansion
	2.3 LTL transition system

	3 New satisfiability checking algorithm
	3.1 Approach overview
	3.2 Obligation set
	3.3 Tagging input formulas
	3.4 On-the-fly satisfiability algorithm
	3.5 Proof of theorem 3.2
	3.5.1 Looping formulas and their properties
	3.5.2 Soundness proof of theorem 3.2
	3.5.3 Completeness proof of theorem 3.2


	4 Experiments
	4.1 Tool implementation
	4.2 Comparing with automata-based solvers
	4.2.1 Testing tools
	4.2.2 Benchmarks
	4.2.3 Experimental results

	4.3 Discussion

	5 Related work
	6 Conclusions
	Acknowledgements
	References




