Act for Your Duties but Maintain Your Rights

Shufang Zhu, Giuseppe De Giacomo KR 2022

Sapienza University of Rome

Established by the European Commissio

1

- Autonomy, one of the grand objectives AI
 - Autonomous system, react to environment changes
- Automated strategy synthesis [Pnueli & Rosner, 1989]
 - Given: a task expressed in a declarative specification
 - **Obtain**: a strategy (system model)

• prescribes for **env action sequence**, makes **agn response**, the generated trace satisfies specification

- prescribes for **env action sequence**, makes **agn response**, the generated trace satisfies specification
- Deterministic: $\sigma:(2^{\mathcal{X}})^+
 ightarrow 2^{\mathcal{Y}}$, returns a single agent action

- prescribes for **env action sequence**, makes **agn response**, the generated trace satisfies specification
- Deterministic: $\sigma:(2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$, returns a single agent action
- Nondeterministic: $\Pi: (2^{\mathcal{X}})^+ \to 2^{2^{\mathcal{Y}}}$, returns a set of agent actions to choose from nondeterministically

- prescribes for **env action sequence**, makes **agn response**, the generated trace satisfies specification
- Deterministic: $\sigma:(2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$, returns a single agent action
- Nondeterministic: $\Pi: (2^{\mathcal{X}})^+ \to 2^{2^{\mathcal{Y}}}$, returns a set of agent actions to choose from nondeterministically
- Every nondet. strategy Π captures a set of det. strategies σ

- Standard agents
 - Work in a *fixed* manner: actions only serve the assigned task
 - Highly limits the freedom of the agent

- Standard agents
 - Work in a *fixed* manner: actions only serve the assigned task
 - Highly limits the freedom of the agent
- Intelligent agents
 - Work in a *flexible* manner: actions only serve the assigned task + agent demands (if the agent decides to)
 - Allow more freedom of the agent

- Standard agents
 - Work in a *fixed* manner: actions only serve the assigned task
 - Highly limits the freedom of the agent
- Intelligent agents
 - Work in a *flexible* manner: actions only serve the assigned task + agent demands (if the agent decides to)
 - Allow more freedom of the agent
- Duties and Rights
 - Duties: assigned tasks, guaranteed to be accomplished
 - Rights: agent demands, accomplished on the agent's own

- Duties and rights, LTL_f synthesis under environment specifications
 - Tasks in LTL_f formulas, environment in safety specifications
 - Definition, computational properties, and formally well-founded algorithms
- Further duties and rights, while agent in execution
 - Live synthesis in Formal Methods [Finkbeiner, Klein, & Metzger 2021]
 - Definition, computational properties, and formally well-founded algorithms

Environment specification env, agent duties φ_d ,

Obtain:

Agent strategy $\sigma: (2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$, a function from past history of environment behaviors to agent actions

 $\forall \gamma \triangleright env, \mathsf{Play}(\sigma, \gamma) \models \varphi_{\mathsf{d}}$

 $arphi_{\sf d}$ describes the mandatory goal/task when the environment behaves as its specification env

Environment specification *env*, agent duties φ_d , agent rights φ_r

Obtain:

Agent strategy $\sigma: (2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$, such that $\forall \gamma \ \rhd env$,

- either $\mathsf{Play}(\sigma, \gamma) \models \varphi_{\mathsf{d}}$
- or $\mathsf{Play}(\sigma, \gamma) \models \varphi_{\mathsf{d}} \land \varphi_{\mathsf{r}}$ if the agent decides to achieve φ_{r} as well

Environment specification env, agent duties φ_{d} ,

Obtain:

Agent strategy $\sigma: (2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$, such that $\forall \gamma \ \vartriangleright env$,

- either $\mathsf{Play}(\sigma, \gamma) \models \varphi_{\mathsf{d}}$
- or $\mathsf{Play}(\sigma, \gamma) \models \varphi_{\mathsf{d}} \land \varphi_{\mathsf{r}}$ if the agent decides to achieve φ_{r} as well

The agent decides whether

Environment specification env, agent duties φ_{d} ,

Obtain:

Agent strategy $\sigma: (2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$, such that $\forall \gamma \ \vartriangleright env$,

- either $\mathsf{Play}(\sigma, \gamma) \models \varphi_{\mathsf{d}}$
- or $\mathsf{Play}(\sigma, \gamma) \models \varphi_{\mathsf{d}} \land \varphi_{\mathsf{r}}$ if the agent decides to achieve φ_{r} as well

The agent decides whether & when

Environment specification env, agent task φ , history h

Agent strategy $\sigma: (2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$ enforces φ , with respect to history *h*, denoted by $\sigma \vartriangleright_h \varphi$

- IF $\forall \gamma \triangleright env$ such that $\mathsf{Play}(\sigma, \gamma)$ has h as a prefix
- THEN $Play(\sigma, \gamma) \models \varphi$

Environment specification env, agent duties φ_{d} , agent rights φ_{r}

Agent strategy $\sigma: (2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$ enforcing φ_{d} is right-aware for φ_{r} , if $\forall \gamma \triangleright env$

- $\mathsf{Play}(\sigma, \gamma) \models \varphi_{\mathsf{d}}$
- for every prefix h of $Play(\sigma, \gamma)$, there exists a strategy σ_h that enforces $\varphi_d \wedge \varphi_r$ wrt h

Environment specification env, agent duties φ_d , agent rights φ_r

Obtain:

Agent strategy $\sigma: (2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$ enforcing φ_d that is right-aware of φ_r

A cleaning robot working in a circular hallway, the charging station is close to the entrance. **Duty** "cleaning room A" $\varphi_d = \Diamond(\neg Dust_A \land RobotOut_A)$ **Rights** "fully charging battery" $\varphi_r = \Diamond(BatteryFull)$

- 1. Take the direction that passes the charging station to room A and clean it. The remaining battery after enforcing φ_d still allows the robot to reach the charging station
- 2. Take the other direction to reach room A and clean it. The remaining battery after enforcing φ_d is not enough for the robot to reach the charging station

A cleaning robot working in a circular hallway, the charging station is close to the entrance. **Duty** "cleaning room A" $\varphi_d = \Diamond(\neg Dust_A \land RobotOut_A)$ **Rights** "fully charging battery" $\varphi_r = \Diamond(BatteryFull)$

- 1. Take the direction that passes the charging station to room A and clean it. The remaining battery after enforcing φ_d still allows the robot to reach the charging station $\checkmark\checkmark$
- 2. Take the other direction to reach room A and clean it. The remaining battery after enforcing φ_d is not enough for the robot to reach the charging station XX

Synthesis Technique

Key idea

• Winning region of reachability game, maintaining the ability to reach the goal states

Solution

- 1. Compute W_r wrt env. spec. *env*, duties φ_d and rights φ_r (2exp time)
 - A_{env} as $\{\gamma \mid \gamma \ arpropto env\}$ [De Giacomo et al. 2021]
 - $A_{env} imes A_{arphi_{\sf d}} imes A_{arphi_{\sf r}}$, reachability game
- 2. A det. strategy σ_d pursing φ_d (black arrows), which always acts within W_r
 - while achieving $\varphi_{\rm d}$
 - having the capability of achieving also $\varphi_{\rm r}$

Synthesis Technique

Key idea

• Winning region of reachability game,

maintaining the ability to reach the goal states

Solution

- 1. Compute W_r wrt env. spec. *env*, duties φ_d and rights φ_r (2exp time)
 - A_{env} as $\{\gamma \mid \gamma \ arpropto env\}$ [De Giacomo et al. 2021]
 - $A_{env} imes A_{arphi_{\sf d}} imes A_{arphi_{\sf r}}$, reachability game
- 2. A det. strategy σ_d pursing φ_d (black arrows), which always acts within W_r
 - while achieving $\varphi_{\rm d}$
 - having the capability of achieving also $\varphi_{\rm r}$

Computationally, linear time

Achieve rights in execution

• a nondet. strategy $\prod_{d \wedge r}$ pursing $\varphi_d \wedge \varphi_r$

Computationally, linear time

How does the ultimate strategy work?

- Follow σ_d to achieve duties φ_d (light green zone)
- Choose one strategy from Π_{d∧r} to achieve also rights φ_r (dark green zone), whenever the agent decides to do so

Computationally, only requires a constant overhead!

- Standard agents
 - Only one task (duty) to accomplish, terminates after finishing
- Intelligent agents
 - Take further tasks (duties and rights) while in execution
 - E.g., a new room to clean while the robot is cleaning the rooms it got assigned at the beginning
- Handling further duties and rights while in execution

• Agent and environment start acting when the first duty arrives

- Agent and environment start acting when the first duty arrives
- New duties arrive after a history h

- Agent and environment start acting when the first duty arrives
- New duties arrive after a history h
- Agent enforces ongoing duties with respect to history h

- Agent and environment start acting when the first duty arrives
- New duties arrive after a history h
- Agent enforces ongoing duties with respect to history h
- Agent enforces **new duties** after history h

Obtain: Agent strategy $\sigma: (2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$, such that

- σ_d enforces φ_d and is right-aware for φ_r wrt h
- σ_d enforces $\varphi_{\rm fd}$ and is right-aware for $\varphi_{\rm fr}$ after h

Obtain: Agent strategy $\sigma: (2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$, such that

- σ_d enforces φ_d and is right-aware for φ_r wrt h
- σ_d enforces $\varphi_{\rm fd}$ and is right-aware for $\varphi_{\rm fr}$ after h

The agent decides whether achieving rights ($\varphi_{\rm r}$, $\varphi_{\rm fr}$) & when

Duty "cleaning room A" $\varphi_d = \Diamond(\neg Dust_A \land RobotOut_A)$ **Rights** "fully charging battery" $\varphi_r = \Diamond(BatteryFull)$

New duty "cleaning room B" $\varphi_{fd} = \Diamond (\neg Dust_B \land RobotOut_B)$

• Take the direction that passes the charging station to reach room A and clean it. Then go to room B and clean it. The remaining battery after cleaning is not enough for the robot to reach the charging station

Duty "cleaning room A" $\varphi_d = \Diamond(\neg Dust_A \land RobotOut_A)$ **Rights** "fully charging battery" $\varphi_r = \Diamond(BatteryFull)$

New duty "cleaning room B" $\varphi_{fd} = \Diamond (\neg Dust_B \land RobotOut_B)$

Take the direction that passes the charging station to reach room A and clean it. Then go to room B and clean it. The remaining battery after cleaning is not enough for the robot to reach the charging station XX

Recall: winning region W_r , maintaining the ability to achieve φ_r

1. Compute $W_{r \wedge fr}$, maintaining the ability to achieve φ_r wrt h, and φ_{fr} after h (2exp time)

Recall: winning region W_r , maintaining the ability to achieve φ_r

- 1. Compute $W_{r \wedge fr}$, maintaining the ability to achieve φ_r wrt h, and φ_{fr} after h (2exp time)
 - Synchronize the environment with the new duties and new rights!
- 2. A det. strategy σ_d pursing φ_d and φ_{fd} , which always acts within $W_{r \wedge fr}$
 - while achieving $\varphi_{\rm d}$ and $\varphi_{\rm fd}$
 - having the capability of achieving also $\varphi_{\rm r}$ and $\varphi_{\rm fr}$

Recall: winning region W_r , maintaining the ability to achieve φ_r

- 1. Compute $W_{r \wedge fr}$, maintaining the ability to achieve φ_r wrt h, and φ_{fr} after h (2exp time)
 - Synchronize the environment with the new duties and new rights!
- 2. A det. strategy σ_d pursing φ_d and φ_{fd} , which always acts within $W_{r \wedge fr}$
 - while achieving $\varphi_{\rm d}$ and $\varphi_{\rm fd}$
 - having the capability of achieving also $\varphi_{\rm r}$ and $\varphi_{\rm fr}$

Computationally, linear time

Achieve rights in execution

- a nondet. strategy $\prod_{d \wedge fd \wedge r}$ pursing $\varphi_d \wedge \varphi_r$ wrt *h*, and φ_{fd} after *h*
- a nondet. strategy $\Pi_{d \wedge fd \wedge fr}$ pursing φ_d wrt h, and $\varphi_{fd} \wedge \varphi_{fr}$ after h
- a nondet. strategy $\prod_{d \wedge fd \wedge r \wedge fr}$ pursing $\varphi_d \wedge \varphi_r$ wrt h, and $\varphi_{fd} \wedge \varphi_{fr}$ after h

Achieve rights in execution

- a nondet. strategy $\prod_{d \wedge fd \wedge r}$ pursing $\varphi_d \wedge \varphi_r$ wrt *h*, and φ_{fd} after *h*
- a nondet. strategy $\prod_{d \wedge fd \wedge fr}$ pursing φ_d wrt h, and $\varphi_{fd} \wedge \varphi_{fr}$ after h
- a nondet. strategy $\prod_{d \wedge fd \wedge r \wedge fr}$ pursing $\varphi_d \wedge \varphi_r$ wrt h, and $\varphi_{fd} \wedge \varphi_{fr}$ after h

Arbitrary subsets of rights: maintain the information and compute on demands

- Agents handling duties and rights, mandatory tasks and optional tasks
- Further duties and rights arrive in execution
- Multiple duties and multiple rights

- More expressive environment specifications
- More expressive task categories, concepts from Deontic Logic