Mimicking Behaviors in Separated Domains

Giuseppe De Giacomo¹ Dror Fried² Fabio Patrizi¹

Shufang Zhu¹

¹Sapienza University of Rome ²The Open University of Israel

> GenPlan 2022 Jul 23, 2022

Behavior Mimicking

Example

Kid mimicking parent making recipe (unknown to kid):

- Parent acts in real kitchen: real eggs, pans, fire, water,...
- Kid in toy kitchen: plastic eggs, toy pots only (no toy pans), no fire, no water,...
- Kid's goal: make recipe in toy kitchen
- Kid maps real kitchen states/actions to toy kitchen:
 - egg in real pan \Rightarrow toy egg in pot
 - pan on stove \Rightarrow pot on toy stove

Behavior Mimicking

Main features:

- Two agents: A (parent), B (kid)
- A operates in \mathcal{D}_A (real kitchen)
- B operates in \mathcal{D}_B (toy kitchen)
- \mathcal{D}_A and \mathcal{D}_B separated:
 - Actions in \mathcal{D}_A do not affect \mathcal{D}_B , and viceversa
- Mapping φ between behaviors of A and B (on \mathcal{D}_A and \mathcal{D}_B):
 - egg in real pan \Rightarrow toy egg in pot
 - pan on stove \Rightarrow pot on toy stove
- Goal:
 - find a strategy for B to mimic A
 - Mimicking defined by φ

Dynamic Domains

Dynamic Domain over propositions Prop

- Domain $\mathcal{D} = (S, s_0, \delta, \lambda)$:
 - S finite set of states
 - $s_0 \in S$ initial state
 - $\delta \subseteq S \times S$ transition relation
 - $\lambda: S \mapsto 2^{Prop}$ state-labeling function

• Finite/infinite *traces* as standard: $\tau = s_0 s_1 \cdots s_\ell$ (possibly $\ell = \infty$)

- Actions correspond to selecting next transition
- In fact, deterministic

Mimicking Behaviors in Separated Domains (MBSD) Problem Instance

- $\mathcal{P} = (\mathcal{D}_A, \mathcal{D}_B, \Phi, Ag_{stop})$, where:
 - $\mathcal{D}_A = (S, s_0, \delta^A, \lambda^A)$, dynamic domain over $Prop^A$
 - $\mathcal{D}_B = (T, t_0, \delta^B, \lambda^B)$, dynamic domain over $Prop^B$
 - $Prop^A \cap Prop^B = \emptyset$
 - Φ , mapping specification: LTL_f formula over $Prop^A \cup Prop^B$
 - $Ag_{stop} \in \{A, B\}$, designated stop agent

Mappings

Intuition: Φ expresses properties of *joint traces* of \mathcal{D}_A and \mathcal{D}_B

$$\tau_{A} = s_{0} \ s_{1} \cdots s_{\ell} \qquad \tau_{B} = t_{0} \ t_{1} \cdots t_{\ell} \qquad \tau_{A} \cup \tau_{B} = \begin{pmatrix} s_{0} \\ t_{0} \end{pmatrix} \begin{pmatrix} s_{1} \\ t_{1} \end{pmatrix} \cdots \begin{pmatrix} s_{\ell} \\ t_{\ell} \end{pmatrix}$$

- Φ : Linear-time temporal formulae over finite traces (LTL_f) over $Prop^A$ and $Prop^B$
- Combines:
 - boolean operators, temporal operators: *next* (**X**), *until* (**U**), always (□), eventually (◊), ...
- can express:

• $\Box \phi$ (always ϕ), $\Diamond \phi$ (eventually ϕ), $\Box \phi \rightarrow \Diamond \psi$ (whenever ϕ eventually ψ), $\phi \mathbf{U} \psi$ (ϕ until ψ), ...

Examples:

- $\Phi = \Box(egg_in_real_pan \rightarrow egg_in_toy_pot) \land \Box(pan_on_stove \rightarrow pot_on_toy_stove)$
- In general, arbitrarily complex mappings: $\Box(a \rightarrow \Diamond(b\mathbf{U}c)) \land \Box \Diamond q$

Designated Stop Agent

Designated Stop Agent decides when to stop

Examples:

- B (parent) announces when recipe is completed
- A (kid) decides when to leave

Choice of Stop Agent strongly affects solution:

- if B (kid) leaves right after starting the game, it trivially mimics B (parent)
- (In kitchen example, parent stops)

Strategies

Strategy for *B*:

- function $\sigma: S^+ \to T$
- given sequence of \mathcal{D}_A states, returns move for B (i.e., next \mathcal{D}_B state)

In general, depends on history

As A operates in \mathcal{D}_A and B acts according to a strategy σ , a joint trace is *induced*:

$$\tau_{\mathcal{A},\sigma} = \begin{pmatrix} s_0 \\ \sigma(s_0) \end{pmatrix} \begin{pmatrix} s_1 \\ \sigma(s_0 \ s_1) \end{pmatrix} \cdots \begin{pmatrix} s_\ell \\ \sigma(s_0 \ s_1 \cdots s_\ell) \end{pmatrix}$$

In general, many joint traces exist:

• Result of all choices available to A and consequent B's responses

Solution

Definition (MBSD Solution)

Solution to MBSD problem instance $\mathcal{P} = (\mathcal{D}_A, \mathcal{D}_B, \Phi, Ag_{stop})$:

- Executable strategy σ s.t.:
 - $Ag_{stop} = A$ and for every finite trace τ_A of \mathcal{D}_A , $\tau_{A,\sigma} \models \Phi$; or
 - $Ag_{stop} = B$ and for every infinite trace τ_A of \mathcal{D}_A t.e. finite prefix τ'_A s.t. $\tau'_{A,\sigma} \models \Phi$

Intuition:

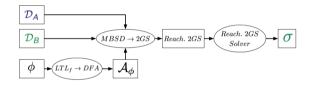
- A Stop Agent: B has a strategy to always keep Φ enforced, no matter how A acts
- B Stop Agent: B has a strategy to enforce Φ at least once, no matter how A acts

Essentially:

• Synthesis where environment and system do not affect each other

Solution Approach

- Search for a strategy in a 2-Player game
- Based on constructing DFA A_{ϕ} for mapping ϕ (2EXPTIME [De Giacomo&Vardi, 2013])
- DFA \mathcal{A}_{ϕ} embedded in 2-Player Reachability Game



Theorem

MBSD with general mappings is in:

- 2EXPTIME in combined complexity and mapping complexity
- PTIME in domain complexity

G. De Giacomo, D. Fried, F. Patrizi, S. Zhu

Mimicking Behaviors in Separated Domains

Mapping Classes

Form of mapping affects solution complexity

Two classes of mappings investigated:

- Point-wise Mappings: $\Phi = \bigwedge_{i=1}^{k} \Box(\varphi_i \to \psi_i)$
 - $\Phi = \Box(egg_in_real_pan \rightarrow egg_in_toy_pot) \land \Box(pan_on_stove \rightarrow pot_on_toy_stove)$
- Target Mappings: $\Phi = \bigwedge_{i=1}^{k} (\Diamond \varphi_i) \rightarrow (\Diamond \psi_i)$
 - $\Phi = \diamondsuit$ salt_added $\rightarrow \diamondsuit$ talco_added
- Recall: properties over \mathcal{D}_A and \mathcal{D}_B are separated:
 - φ_i over $Prop^A$, ψ_i over $Prop^B$
 - $Prop^A$ and $Prop^B$ disjoint

Results

Theorem

MBSD with Point-wise mappings is in PTIME for:

- domain complexity
- mapping complexity
- combined complexity

Theorem

MBSD with Target mappings is

- PTIME in: domain complexity
- PSPACE in:
 - mapping complexity
 - combined complexity
- PSPACE-hard (even with DAG-like \mathcal{D}_A and \mathcal{D}_B)

Intuition

Each mapping class leads to a different game:

- Point-wise Mappings:
 - Safety Game
 - B's objective: maintain (continuously) the game in a region where A can be mimicked
 - Game Structure polynomial in size of domains and mapping
- Target Mappings:
 - Reachability Game
 - B's objective: reach a state where A is (eventually) mimicked
 - Game Structure polynomial in size of domains, exponential in # of conjuncts in mapping
- Knowing form of mapping saves constructing DFA for ϕ (2EXPTIME)
- Reachability and safety games solvable in PTIME wrt state space of game

Conclusions

Contributions:

- Proposed and formalized MBSD
- General solution approach (2EXPTIME)
- Identified classes of mappings with better computational behavior:
 - Point-wise mappings (PTIME)
 - Target mappings (PSPACE-hard, PTIME wrt domains)
 - Also Tree-like domains (PTIME, not covered in talk)

Open point:

- To what extent separation can yield computational improvements in general, e.g:
- $\Phi = \bigwedge_{i=1}^{k} \Box(\varphi_i \to \psi_i)$, with: $\varphi_i \operatorname{LTL}_f$ over Prop^A , $\psi_i \operatorname{LTL}_f$ over Prop^B
- Conjunction of Point-wise and Target-mappings

Thank you!

Questions?