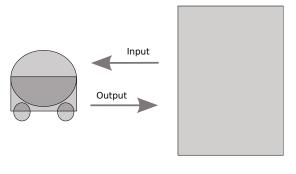
Finite-Trace and Generalized-Reactivity Specifications in Temporal Synthesis

Giuseppe De Giacomo¹, Antonio Di Stasio¹, Lucas M. Tabajara², Moshe Vardi² and **Shufang Zhu**¹

¹Sapienza University of Rome ²Rice University


Shufang Zhu (Sapienza)

 LTL_f and GR(1) in Synthesis

IJCAI2021 1 / 20

Introduction

• Temporal Synthesis: automatically design a reactive system with correctness guarantee [Pnueli&Rosner, 1989]

Agent Environment

Figure 1: Reactive System

Shufang Zhu (Sapienza)

LTL_f and GR(1) in Synthesis

IJCAI2021 2 / 20

< □ > < □ > < □ > < □ > < □ > < □ >

Temporal Synthesis: Challenges and Successes

- Linear Temporal Logic (LTL), games on infinite-word automata
 - Parity game construction and solving
 - No scalable algorithms [Kupferman, 2012]
- Two successful responses to the difficulties
 - Developed in Formal Methods, GR(1) approach [Bloem et al., 2012]
 - Developed in AI, LTL_f approach [De Giacomo&Vardi, 2013]
 - Numerous applications, e.g., planning [Kress-Gazit et al., 2009; Camacho et al., 2017; De Giacomo&Rubin, 2018]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What We Want

- Bring two successes together
 - LTL_f approach
 - GR(1) approach
- Applicable scenarios
 - Planning, nondeterministic planning domain

- 4 回 ト 4 ヨ ト 4 ヨ ト

Generalized Reactivity (1), GR(1) [Bloem et al., 2012]

- GR(1) game $\mathcal{G} = (\mathcal{A}, \psi)$
 - Game arena $\mathcal A$ encoding moves
 - Winning condition GR(1) formula ψ , powerful notion of fairness

$$\psi = \bigwedge_{i=1}^{m} \Box \Diamond \mathcal{J}_i \to \bigwedge_{j=1}^{n} \Box \Diamond \mathcal{K}_j$$

- Pros: simple game solving, quadratic time
- Cons: only fairness, weak for specifying agent tasks

イロト 不得 トイラト イラト 一日

LTL over finite traces, LTL_f [De Giacomo&Vardi, 2015]

- Accomplishing task in LTL_f iff DFA game with reachability condition
- Pros: Applicable with simple solution
 - Finite-horizon agent tasks, AI applications
 - Simple game arena construction, finite-word automata
- **Cons**: Having environment assumptions $\varphi^e \rightarrow \varphi^a_{task}$
 - Agent task $\varphi^{\rm a}_{\rm task}$ in LTL_f
 - Environment assumption $\varphi^{\rm e}$ in LTL
 - Going back to LTL synthesis?

LTL_f Synthesis under Env. Assumptions $\varphi^e \rightarrow \varphi^a_{task}$

- LTL, safe LTL, co-safe LTL [Camacho et al., 2018; De Giacomo et al., 2020]
 - Still infinite-word automata, not scalable
- restriction on the form of the specifications themselves Simple Fairness (*infinitely-often*) and Stability (*eventually-always*) [Zhu et al., 2020]
 - Game arena from DFA of LTL_f φ^{a}_{task}
 - $\varphi^{\rm e}$ as part of the DFA game winning condition
 - Limited expressiveness, $\varphi^e = \Box \Diamond J$ or $\varphi^e = \Diamond \Box K$

Bring Together GR(1) and LTL_f

- GR(1) formula, generalization of fairness
 - Powerful expressiveness on environment assumption
- LTL_f formula, natural for finite-horizon task
 - Strong agent task specification
- Simple solution
 - No detour to LTL synthesis
 - Games on finite-word automata

通 ト イ ヨ ト イ ヨ ト

LTL_f under GR(1) Assumptions

Given:

- Environment variables ${\mathcal X}$, Agent variables ${\mathcal Y}$
- Agent task $\varphi^{\rm a}_{\rm task}$ in LTL_f
- Environment assumption $\varphi_{GR(1)}^e = \bigwedge_{i=1}^m \Box \Diamond \mathcal{J}_i \to \bigwedge_{j=1}^n \Box \Diamond \mathcal{K}_j$

Obtain:

Agent strategy $g : (2^{\mathcal{X}})^* \to 2^{\mathcal{Y}}$, a function from past history of environment behaviors to agent actions

- If: environment behaves as $\varphi^{e}_{GR(1)}$
- Then: φ^{a}_{task} is achieved

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reduction to Two-player Games

- Agent goal: IF $\varphi^{e}_{GR(1)}$ THEN φ^{a}_{task}
- Key Idea: Conduct specific two-player games
 - LTL_f task, corresponding DFA as the game arena
 - GR(1) assumption, part of the game winning condition

The agent wins the game if a specific winning condition is satisfied.

< □ > < □ > < □ > < □ > < □ > < □ >

Reduction to Two-player Games

- Agent goal: IF $\varphi^{e}_{\textit{GR}(1)}$ THEN $\varphi^{a}_{\textit{task}}$
- $\bullet\,$ Game arena from DFA of $\varphi^{\rm a}_{\it task}$
- The agent wins the game if either happens:
 - Reachability: visiting the final states from $\varphi^{\rm a}_{\rm task}$
 - Dual GR(1): violating $\varphi^{e}_{GR(1)}$
- Complexity: quadratic time

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Applicable Scenarios: Planning

- Planning domain, safety conditions on both players
- Adding safety conditions
 - Environment safety: φ_{safe}^{e} holds forever
 - Agent safety: φ^{a}_{safe} holds until φ^{a}_{task} is accomplished
 - IF $\varphi^{e}_{GR(1)} \wedge \varphi^{e}_{safe}$ THEN $\varphi^{a}_{task} \wedge \varphi^{a}_{safe}$

- Safety: bad things never happen
 - Infinite-word automata? Not necessary!
- Alternative way: interpretation on all prefixes
 - No bad prefixes, all prefixes are good
 - Prefixes are finite

A B A A B A

Safety Conditions in LTL_f

- LTL_f formula φ
- Satisfaction on all prefixes: a (finite or infinite) trace π satisfies φ
 - Every non-empty finite prefix of π satisfies φ
- Capture all safety properties! Finite and Infinite!

- 4 回 ト 4 ヨ ト 4 ヨ ト

Reduction to Two-player Games

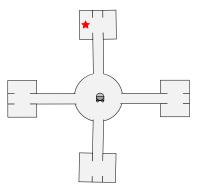
- Agent goal: IF $\varphi^{e}_{GR(1)} \wedge \varphi^{e}_{safe}$ THEN $\varphi^{a}_{task} \wedge \varphi^{a}_{safe}$
- Alternative view: IF $\varphi^{e}_{GR(1)}$ THEN (~ φ^{e}_{safe}) \lor ($\varphi^{a}_{task} \land \varphi^{a}_{safe}$)
 - Game arena from DFAs of $\varphi^{\rm e}_{\it safe}, \varphi^{\rm a}_{\it task}, \varphi^{\rm a}_{\it safe}$
 - The agent wins the game if any happens:
 - Reachability: visiting non-final states from φ^{e}_{safe}
 - Reachability: visiting final states from $\varphi^a_{\textit{task}}$ while staying in final states from $\varphi^a_{\textit{safe}}$
 - Dual GR(1): Violating $\varphi^{e}_{GR(1)}$
 - Complexity: quadratic time

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LTL_f under GR(1) Assumptions with Safety Conditions

- Problem: if $\varphi^{e}_{GR(1)} \wedge \varphi^{e}_{safe}$ then $\varphi^{a}_{task} \wedge \varphi^{a}_{safe}$
- Game arena construction, simple
 - LTL_f formulas $\varphi^{e}_{safe}, \varphi^{a}_{safe}, \varphi^{a}_{task}$, finite-word automata
- Game solving, simple
 - Quadratic time

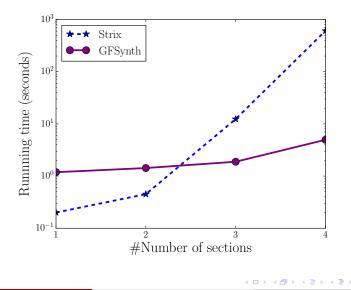
・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ


LICAI2021

Experimental Evaluation

- GFSYNTH: automaton construction, reduction to GR(1) game, and game solving
 - LTL_f-to-DFA SYFT [Zhu et al., 2017]
 - GR(1) game solver SLUGS [Ehlers&Raman, 2016]
- Baseline: reduction to LTL synthesis, STRIX [Meyer et al., 2018]
- Benchmarks: Finding Nemo, based on [Kress-Gazitet al., 2009]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶


Finding Nemo

- Circular hallway leading to n sections, two rooms of each
- Robot looking for "Nemo", appear in any of the odd-numbered rooms
- Agn. Task: 3 times of Nemo
- Env. GR(1): (\Box \diamond Visit_Odd-numbered-rooms) \rightarrow (\Box \diamond Nemo_Appears)

• • • • • • • • • • • •

Experimental Results: Finding Nemo

IJCAI2021 19 / 20

LTL_f under GR(1) Assumptions with Safety Conditions

- Problem: if $\varphi^{e}_{GR(1)} \wedge \varphi^{e}_{safe}$ then $\varphi^{a}_{task} \wedge \varphi^{a}_{safe}$
- Writing safety conditions in LTL_f
- Simple game arena construction
 - DFA construction from LTL_f formulas $\varphi^{e}_{safe}, \varphi^{a}_{safe}, \varphi^{a}_{task}$
- Simple game solving
 - GR(1) formula $\varphi^{e}_{GR(1)}$

(本間) (本語) (本語) (二語